Anna Means
Assistant Professor
Last active: 1/6/2017

Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling.

Blaine SA, Ray KC, Anunobi R, Gannon MA, Washington MK, Means AL
Development. 2010 137 (14): 2289-96

PMID: 20534672 · PMCID: PMC2889602 · DOI:10.1242/dev.048421

Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.

MeSH Terms (18)

Adult Animals Cell Differentiation Cholangiopancreatography, Endoscopic Retrograde Endocrine Cells Epithelial Cells Epithelium Humans Insulin Intercellular Signaling Peptides and Proteins Islets of Langerhans Mice Mice, Transgenic Pancreas Pancreas, Exocrine Pancreatic Neoplasms Pancreatitis Signal Transduction

Connections (4)

This publication is referenced by other Labnodes entities:

Links