Pancreatic β-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance.

Dadi PK, Vierra NC, Jacobson DA
Endocrinology. 2014 155 (10): 3757-68

PMID: 24932805 · PMCID: PMC4164933 · DOI:10.1210/en.2013-2051

Calcium entry through voltage-dependent Ca(2+) channels (VDCCs) is required for pancreatic β-cell insulin secretion. The 2-pore-domain acid-sensitive potassium channel (TASK-1) regulates neuronal excitability and VDCC activation by hyperpolarizing the plasma membrane potential (Δψp); however, a role for pancreatic β-cell TASK-1 channels is unknown. Here we examined the influence of TASK-1 channel activity on the β-cell Δψp and insulin secretion during secretagogue stimulation. TASK-1 channels were found to be highly expressed in human and rodent islets and localized to the plasma membrane of β-cells. TASK-1-like currents of mouse and human β-cells were blocked by the potent TASK-1 channel inhibitor, A1899 (250nM). Although inhibition of TASK-1 currents did not influence the β-cell Δψp in the presence of low (2mM) glucose, A1899 significantly enhanced glucose-stimulated (14mM) Δψp depolarization of human and mouse β-cells. TASK-1 inhibition also resulted in greater secretagogue-stimulated Ca(2+) influx in both human and mouse islets. Moreover, conditional ablation of mouse β-cell TASK-1 channels reduced K2P currents, increased glucose-stimulated Δψp depolarization, and augmented secretagogue-stimulated Ca(2+) influx. The Δψp depolarization caused by TASK-1 inhibition resulted in a transient increase in glucose-stimulated mouse β-cell action potential (AP) firing frequency. However, secretagogue-stimulated β-cell AP duration eventually increased in the presence of A1899 as well as in β-cells without TASK-1, causing a decrease in AP firing frequency. Ablation or inhibition of mouse β-cell TASK-1 channels also significantly enhanced glucose-stimulated insulin secretion, which improved glucose tolerance. Conversely, TASK-1 ablation did not perturb β-cell Δψp, Ca(2+) influx, or insulin secretion under low-glucose conditions (2mM). These results reveal a glucose-dependent role for β-cell TASK-1 channels of limiting glucose-stimulated Δψp depolarization and insulin secretion, which modulates glucose homeostasis.

MeSH Terms (19)

Animals Calcium Calcium Signaling Cells, Cultured Female Glucose Glucose Intolerance Humans Insulin Insulin-Secreting Cells Insulin Secretion Male Membrane Potentials Mice Mice, Inbred C57BL Mice, Transgenic Nerve Tissue Proteins Organ Specificity Potassium Channels, Tandem Pore Domain

Connections (2)

This publication is referenced by other Labnodes entities: