James Crowe
Faculty Member
Last active: 3/31/2020

A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein.

Mousa JJ, Kose N, Matta P, Gilchuk P, Crowe JE
Nat Microbiol. 2017 2: 16271

PMID: 28134924 · PMCID: PMC5463187 · DOI:10.1038/nmicrobiol.2016.271

Respiratory syncytial virus (RSV) remains a major human pathogen, infecting the majority of infants before age two and causing re-infection throughout life. Despite decades of RSV research, there is no licensed RSV vaccine. Most candidate vaccines studied to date have incorporated the RSV fusion (F) surface glycoprotein, because the sequence of F is highly conserved among strains of RSV. To better define the human B cell response to RSV F, we isolated from a single donor 13 new neutralizing human monoclonal antibodies (mAbs) that recognize the RSV F protein in the pre-fusion conformation. Epitope binning studies showed that the majority of neutralizing mAbs targeted a new antigenic site on the globular head domain of F, designated here antigenic site VIII, which occupies an intermediate position between the previously defined major antigenic sites II and site Ø. Antibodies to site VIII competed for binding with antibodies to both of those adjacent neutralizing sites. The new mAbs exhibited unusual breadth for pre-fusion F-specific antibodies, cross-reacting with F proteins from both RSV subgroups A and B viruses. We solved the X-ray crystal structure of one site VIII mAb, hRSV90, in complex with pre-fusion RSV F protein. The structure revealed a large footprint of interaction for hRSV90 on RSV F, in which the heavy chain and light chain both have specific interactions mediating binding to site VIII, the heavy chain overlaps with site Ø, and the light chain interacts partially with site II.

MeSH Terms (12)

Antibodies, Monoclonal Antibodies, Neutralizing Antibodies, Viral Cross Reactions Crystallography, X-Ray Epitope Mapping Epitopes Humans Models, Molecular Protein Binding Protein Conformation Viral Fusion Proteins

Connections (1)

This publication is referenced by other Labnodes entities: