Daniel Liebler
Faculty Member
Last active: 2/15/2016

Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry.

Slebos RJ, Brock JW, Winters NF, Stuart SR, Martinez MA, Li M, Chambers MC, Zimmerman LJ, Ham AJ, Tabb DL, Liebler DC
J Proteome Res. 2008 7 (12): 5286-94

PMID: 18939861 · PMCID: PMC2669493 · DOI:10.1021/pr8004666

Shotgun proteome analysis platforms based on multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a powerful means to discover biomarker candidates in tissue specimens. Analysis platforms must balance sensitivity for peptide detection, reproducibility of detected peptide inventories and analytical throughput for protein amounts commonly present in tissue biospecimens (< 100 microg), such that platform stability is sufficient to detect modest changes in complex proteomes. We compared shotgun proteomics platforms by analyzing tryptic digests of whole cell and tissue proteomes using strong cation exchange (SCX) and isoelectric focusing (IEF) separations of peptides prior to LC-MS/MS analysis on a LTQ-Orbitrap hybrid instrument. IEF separations provided superior reproducibility and resolution for peptide fractionation from samples corresponding to both large (100 microg) and small (10 microg) protein inputs. SCX generated more peptide and protein identifications than did IEF with small (10 microg) samples, whereas the two platforms yielded similar numbers of identifications with large (100 microg) samples. In nine replicate analyses of tryptic peptides from 50 microg colon adenocarcinoma protein, overlap in protein detection by the two platforms was 77% of all proteins detected by both methods combined. IEF more quickly approached maximal detection, with 90% of IEF-detectable medium abundance proteins (those detected with a total of 3-4 peptides) detected within three replicate analyses. In contrast, the SCX platform required six replicates to detect 90% of SCX-detectable medium abundance proteins. High reproducibility and efficient resolution of IEF peptide separations make the IEF platform superior to the SCX platform for biomarker discovery via shotgun proteomic analyses of tissue specimens.

MeSH Terms (15)

Adenocarcinoma Biomarkers Cations Chromatography, Ion Exchange Chromatography, Liquid Colonic Neoplasms Computational Biology Gene Expression Regulation, Neoplastic Humans Isoelectric Focusing Mass Spectrometry Peptides Proteomics Reproducibility of Results Trypsin

Connections (3)

This publication is referenced by other Labnodes entities: