Dan Roden
Faculty Member
Last active: 3/24/2020

Identifying genetically driven clinical phenotypes using linear mixed models.

Mosley JD, Witte JS, Larkin EK, Bastarache L, Shaffer CM, Karnes JH, Stein CM, Phillips E, Hebbring SJ, Brilliant MH, Mayer J, Ye Z, Roden DM, Denny JC
Nat Commun. 2016 7: 11433

PMID: 27109359 · PMCID: PMC4848547 · DOI:10.1038/ncomms11433

We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1-1.2), P=9.8 × 10(-11)) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3-1.6), P=1.3 × 10(-10)). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations.

MeSH Terms (18)

Adult Aged Aged, 80 and over Disease European Continental Ancestry Group Exome Female Genetic Predisposition to Disease Genetic Variation Genome-Wide Association Study Genotype HLA Antigens Humans Male Middle Aged Models, Genetic Phenotype Polymorphism, Single Nucleotide

Connections (3)

This publication is referenced by other Labnodes entities: