Transcriptional corepressor MTG16 regulates small intestinal crypt proliferation and crypt regeneration after radiation-induced injury.

Poindexter SV, Reddy VK, Mittal MK, Williams AM, Washington MK, Harris E, Mah A, Hiebert SW, Singh K, Chaturvedi R, Wilson KT, Lund PK, Williams CS
Am J Physiol Gastrointest Liver Physiol. 2015 308 (6): G562-71

PMID: 25573176 · PMCID: PMC4360050 · DOI:10.1152/ajpgi.00253.2014

Myeloid translocation genes (MTGs) are transcriptional corepressors implicated in development, malignancy, differentiation, and stem cell function. While MTG16 loss renders mice sensitive to chemical colitis, the role of MTG16 in the small intestine is unknown. Histological examination revealed that Mtg16(-/-) mice have increased enterocyte proliferation and goblet cell deficiency. After exposure to radiation, Mtg16(-/-) mice exhibited increased crypt viability and decreased apoptosis compared with wild-type (WT) mice. Flow cytometric and immunofluorescence analysis of intestinal epithelial cells for phospho-histone H2A.X also indicated decreased DNA damage and apoptosis in Mtg16(-/-) intestines. To determine if Mtg16 deletion affected epithelial cells in a cell-autonomous fashion, intestinal crypts were isolated from Mtg16(-/-) mice. Mtg16(-/-) and WT intestinal crypts showed similar enterosphere forming efficiencies when cultured in the presence of EGF, Noggin, and R-spondin. However, when Mtg16(-/-) crypts were cultured in the presence of Wnt3a, they demonstrated higher enterosphere forming efficiencies and delayed progression to mature enteroids. Mtg16(-/-) intestinal crypts isolated from irradiated mice exhibited increased survival compared with WT intestinal crypts. Interestingly, Mtg16 expression was reduced in a stem cell-enriched population at the time of crypt regeneration. This is consistent with MTG16 negatively regulating regeneration in vivo. Taken together, our data demonstrate that MTG16 loss promotes radioresistance and impacts intestinal stem cell function, possibly due to shifting cellular response away from DNA damage-induced apoptosis and towards DNA repair after injury.

MeSH Terms (25)

Animals Apoptosis Cell Proliferation Cell Survival DNA Damage Female Gamma Rays Gene Expression Regulation Goblet Cells Histones Intestinal Mucosa Intestine, Small Male Mice, Inbred C57BL Mice, Knockout Nuclear Proteins Phenotype Radiation Injuries, Experimental Radiation Tolerance Regeneration Signal Transduction Stem Cells Tissue Culture Techniques Transcription Factors Wnt3A Protein

Connections (6)

This publication is referenced by other Labnodes entities:

Links