Lucia Rameh Plant
Last active: 12/10/2018

Profile

The Rameh Lab studies the role of phosphoinositides in cell function, with particular emphasis on cellular responses to extracellular signals. Although phosphoinositides represent a minor component of cell membranes, they play critical roles in a diverse range of functions, including cell metabolism, proliferation, motility, and differentiation. Importantly, phosphoinositides have been directly implicated in human diseases such as cancer, myopathies and metabolic syndromes. Thus, understanding how phosphoinositides work in cells will likely lead to better interventions in the treatment of many pathologies. We have three main goals in the lab: 1) To understand the physiological role of the novel phosphoinositide PI-5-P; 2) To define the mechanisms by which phosphoinositides regulate nutrient-sensing and TORC1 signaling; 3) To identify the intracellular signals that contribute to hyperinsulinemia and diabetes.

Publications

The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway. Ando K, Shah AK, Sachdev V, Kleinstiver BP, Taylor-Parker J, Welch MM, Hu Y, Salgia R, White FM, Parvin JD, Ozonoff A, Rameh LE, Joung JK, Bharti AK (2017) Oncotarget 8(27): 43733-43751
    › Primary publication · 28415827 (PubMed) · PMC5546437 (PubMed Central)
  2. IQGAP1 makes PI(3)K signalling as easy as PIP, PIP, PIP. Rameh LE, Mackey AM (2016) Nat Cell Biol 18(12): 1263-1265
    › Primary publication · 27897158 (PubMed)
  3. Phosphoinositide signalling in type 2 diabetes: a β-cell perspective. Rameh LE, Deeney JT (2016) Biochem Soc Trans 44(1): 293-8
    › Primary publication · 26862218 (PubMed)
  4. Analysis of the Phosphoinositide Composition of Subcellular Membrane Fractions. Sarkes DA, Rameh LE (2016) Methods Mol Biol : 213-27
    › Primary publication · 26552687 (PubMed)
  5. PIPPing on AKT1: How Many Phosphatases Does It Take to Turn off PI3K? Toker A, Rameh L (2015) Cancer Cell 28(2): 143-5
    › Primary publication · 26267528 (PubMed)
  6. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Mackey AM, Sarkes DA, Bettencourt I, Asara JM, Rameh LE (2014) Sci Signal 7(350): ra104
    › Primary publication · 25372051 (PubMed) · PMC4579097 (PubMed Central)
  7. Targeting Plasmodium PI(4)K to eliminate malaria. McNamara CW, Lee MC, Lim CS, Lim SH, Roland J, Simon O, Yeung BK, Chatterjee AK, McCormack SL, Manary MJ, Zeeman AM, Dechering KJ, Kumar TS, Henrich PP, Gagaring K, Ibanez M, Kato N, Kuhen KL, Fischli C, Nagle A, Rottmann M, Plouffe DM, Bursulaya B, Meister S, Rameh L, Trappe J, Haasen D, Timmerman M, Sauerwein RW, Suwanarusk R, Russell B, Renia L, Nosten F, Tully DC, Kocken CH, Glynne RJ, Bodenreider C, Fidock DA, Diagana TT, Winzeler EA (2013) Nature 504(7479): 248-253
    › Primary publication · 24284631 (PubMed) · PMC3940870 (PubMed Central)
  8. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Emerling BM, Hurov JB, Poulogiannis G, Tsukazawa KS, Choo-Wing R, Wulf GM, Bell EL, Shim HS, Lamia KA, Rameh LE, Bellinger G, Sasaki AT, Asara JM, Yuan X, Bullock A, Denicola GM, Song J, Brown V, Signoretti S, Cantley LC (2013) Cell 155(4): 844-57
    › Primary publication · 24209622 (PubMed) · PMC4070383 (PubMed Central)
  9. AKT facilitates EGFR trafficking and degradation by phosphorylating and activating PIKfyve. Er EE, Mendoza MC, Mackey AM, Rameh LE, Blenis J (2013) Sci Signal 6(279): ra45
    › Primary publication · 23757022 (PubMed) · PMC4041878 (PubMed Central)
  10. Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestøl K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM, Brech A, Rusten TE, Stenmark H, Wesche J (2013) EMBO Rep 14(1): 57-64
    › Primary publication · 23154468 (PubMed) · PMC3537138 (PubMed Central)
  11. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP (2012) Cell 149(1): 49-62
    › Primary publication · 22401813 (PubMed) · PMC3319228 (PubMed Central)
  12. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Berger SB, Romero X, Ma C, Wang G, Faubion WA, Liao G, Compeer E, Keszei M, Rameh L, Wang N, Boes M, Regueiro JR, Reinecker HC, Terhorst C (2010) Nat Immunol 11(10): 920-7
    › Primary publication · 20818396 (PubMed) · PMC3338319 (PubMed Central)
  13. Negative regulation of Vps34 by Cdk mediated phosphorylation. Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, Shen Y, Rameh L, Yankner B, Tsai LH, Yuan J (2010) Mol Cell 38(4): 500-11
    › Primary publication · 20513426 (PubMed) · PMC2888511 (PubMed Central)
  14. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP (2010) Sci Signal 3(117): ra29
    › Primary publication · 20388916 (PubMed) · PMC2982149 (PubMed Central)
  15. A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Sarkes D, Rameh LE (2010) Biochem J 428(3): 375-84
    › Primary publication · 20370717 (PubMed) · PMC2944655 (PubMed Central)
  16. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Cancer Cell 16(2): 115-25
    › Primary publication · 19647222 (PubMed) · PMC2957372 (PubMed Central)
  17. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases. Demian DJ, Clugston SL, Foster MM, Rameh L, Sarkes D, Townson SA, Yang L, Zhang M, Charlton ME (2009) J Biomol Screen 14(7): 838-44
    › Primary publication · 19641220 (PubMed)
  18. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, Hennessy BT, Tseng H, Pochanard P, Kim SY, Dunn IF, Schinzel AC, Sandy P, Hoersch S, Sheng Q, Gupta PB, Boehm JS, Reiling JH, Silver S, Lu Y, Stemke-Hale K, Dutta B, Joy C, Sahin AA, Gonzalez-Angulo AM, Lluch A, Rameh LE, Jacks T, Root DE, Lander ES, Mills GB, Hahn WC, Sellers WR, Garraway LA (2009) Cancer Cell 16(1): 21-32
    › Primary publication · 19573809 (PubMed) · PMC2752826 (PubMed Central)
  19. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. Mallo GV, Espina M, Smith AC, Terebiznik MR, Alemán A, Finlay BB, Rameh LE, Grinstein S, Brumell JH (2008) J Cell Biol 182(4): 741-52
    › Primary publication · 18725540 (PubMed) · PMC2518712 (PubMed Central)
  20. Serum withdrawal-induced accumulation of phosphoinositide 3-kinase lipids in differentiating 3T3-L6 myoblasts: distinct roles for Ship2 and PTEN. Mandl A, Sarkes D, Carricaburu V, Jung V, Rameh L (2007) Mol Cell Biol 27(23): 8098-112
    › Primary publication · 17893321 (PubMed) · PMC2169165 (PubMed Central)
  21. Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. Mason D, Mallo GV, Terebiznik MR, Payrastre B, Finlay BB, Brumell JH, Rameh L, Grinstein S (2007) J Gen Physiol 129(4): 267-83
    › Primary publication · 17389247 (PubMed) · PMC2151621 (PubMed Central)
  22. A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. Mitra P, Zhang Y, Rameh LE, Ivshina MP, McCollum D, Nunnari JJ, Hendricks GM, Kerr ML, Field SJ, Cantley LC, Ross AH (2004) J Cell Biol 166(2): 205-11
    › Primary publication · 15249580 (PubMed) · PMC2172303 (PubMed Central)
  23. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase beta-/- mice. Lamia KA, Peroni OD, Kim YB, Rameh LE, Kahn BB, Cantley LC (2004) Mol Cell Biol 24(11): 5080-7
    › Primary publication · 15143198 (PubMed) · PMC416424 (PubMed Central)
  24. Diarrhea-associated HIV-1 APIs potentiate muscarinic activation of Cl- secretion by T84 cells via prolongation of cytosolic Ca2+ signaling. Rufo PA, Lin PW, Andrade A, Jiang L, Rameh L, Flexner C, Alper SL, Lencer WI (2004) Am J Physiol Cell Physiol 286(5): C998-C1008
    › Primary publication · 15075198 (PubMed)
  25. Identification and characterization of a phosphoinositide phosphate kinase homolog. Chang JD, Field SJ, Rameh LE, Carpenter CL, Cantley LC (2004) J Biol Chem 279(12): 11672-9
    › Primary publication · 14701839 (PubMed)
  26. The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, Rameh LE (2003) Proc Natl Acad Sci U S A 100(17): 9867-72
    › Primary publication · 12897244 (PubMed) · PMC187868 (PubMed Central)
  27. Lipid research picks up speed on the slopes of Taos. Field SJ, Lamia KA, Rameh LE, Cantley LC (2002) Dev Cell 2(4): 407-10
    › Primary publication · 11970891 (PubMed)
  28. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) J Cell Biol 155(1): 19-25
    › Primary publication · 11581283 (PubMed) · PMC2150784 (PubMed Central)
  29. Phosphoinositide binding domains: embracing 3-phosphate. Fruman DA, Rameh LE, Cantley LC (1999) Cell 97(7): 817-20
    › Primary publication · 10399908 (PubMed)
  30. The role of phosphoinositide 3-kinase lipid products in cell function. Rameh LE, Cantley LC (1999) J Biol Chem 274(13): 8347-50
    › Primary publication · 10085060 (PubMed)
  31. Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. Rameh LE, Rhee SG, Spokes K, Kazlauskas A, Cantley LC, Cantley LG (1998) J Biol Chem 273(37): 23750-7
    › Primary publication · 9726983 (PubMed)
  32. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. Tolias KF, Rameh LE, Ishihara H, Shibasaki Y, Chen J, Prestwich GD, Cantley LC, Carpenter CL (1998) J Biol Chem 273(29): 18040-6
    › Primary publication · 9660759 (PubMed)
  33. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. Klarlund JK, Rameh LE, Cantley LC, Buxton JM, Holik JJ, Sakelis C, Patki V, Corvera S, Czech MP (1998) J Biol Chem 273(4): 1859-62
    › Primary publication · 9442017 (PubMed)
  34. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) Nature 390(6656): 192-6
    › Primary publication · 9367159 (PubMed)
  35. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. Rameh LE, Arvidsson Ak, Carraway KL, Couvillon AD, Rathbun G, Crompton A, VanRenterghem B, Czech MP, Ravichandran KS, Burakoff SJ, Wang DS, Chen CS, Cantley LC (1997) J Biol Chem 272(35): 22059-66
    › Primary publication · 9268346 (PubMed)
  36. Mitogenic stimulation of resting T cells causes rapid phosphorylation of the transcription factor LSF and increased DNA-binding activity. Volker JL, Rameh LE, Zhu Q, DeCaprio J, Hansen U (1997) Genes Dev 11(11): 1435-46
    › Primary publication · 9192871 (PubMed)
  37. Association of phosphatidylinositol 3-kinase, via the SH2 domains of p85, with focal adhesion kinase in polyoma middle t-transformed fibroblasts. Bachelot C, Rameh L, Parsons T, Cantley LC (1996) Biochim Biophys Acta 1311(1): 45-52
    › Primary publication · 8603102 (PubMed)
  38. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Rameh LE, Chen CS, Cantley LC (1995) Cell 83(5): 821-30
    › Primary publication · 8521499 (PubMed)
  39. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Jhun BH, Rose DW, Seely BL, Rameh L, Cantley L, Saltiel AR, Olefsky JM (1994) Mol Cell Biol 14(11): 7466-75
    › Primary publication · 7935461 (PubMed) · PMC359282 (PubMed Central)
  40. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. Yeh JI, Gulve EA, Rameh L, Birnbaum MJ (1995) J Biol Chem 270(5): 2107-11
    › Primary publication · 7836438 (PubMed)
  41. Generation of cell lines to study the role played by oncogenes and anti-oncogenes in cell proliferation control. Costanzi E, Rameh LE, Joazeiro CA, Armelin MC (1990) Braz J Med Biol Res 23(9): 795-9
    › Primary publication · 2101319 (PubMed)
  42. T antigens' role in polyomavirus transformation: c-myc but not c-fos or c-jun expression is a target for middle T. Rameh LE, Armelin MC (1991) Oncogene 6(6): 1049-56
    › Primary publication · 1648700 (PubMed)
  43. Downregulation of JE and KC genes by glucocorticoids does not prevent the G0----G1 transition in BALB/3T3 cells. Rameh LE, Armelin MC (1992) Mol Cell Biol 12(10): 4612-21
    › Primary publication · 1406651 (PubMed) · PMC360388 (PubMed Central)