Padmini Komalavilas
Last active: 3/11/2015

Profile

My research interests are focused on biochemical pathways in cells.  I am interested in the application of proteomic tools to study protein modification and their impact on cellular physiology.    Impairment of smooth muscle relaxation results in disorders such as vasospasm, hypertension, asthma, preterm labor, and erectile dysfunction.  We use vascular smooth muscle and airway smooth muscle to study the mechanism of vasospasm and asthma.   Physiological, molecular and biochemical techniques along with proteomics are used to examine the protein modifications during contraction and relaxation of smooth muscle to decipher the mechanism.  Current focus is on understanding the molecular mechanism of airway smooth muscle relaxation to identify therapeutics for asthma and chronic obstructive pulmonary disease.  Airway obstruction is characteristic of asthma pathogenesis.  The precise mechanisms of airway obstruction are not clear, however, airway smooth muscle shortening likely plays a significant role in the disease pathology.  While beta adrenergic receptor agonists are widely used for the treatment of bronchospasm associated with acute asthma attacks, their molecular mechanisms of action are still not completely defined.  Beta agonists mediate their effect primarily by increasing cAMP concentration through activation of the beta2 –adrenergic receptor-adenylyl cyclase pathway.  However, regular use of the beta-agonists, inflammation or cytokine treatments lead to hypo responsiveness of the receptor resulting in the loss of prophylactic effect of the beta agonists.  Long term goal of this research is to identify therapeutic agents for asthma that are downstream effectors of the β2 –adrenergic receptor-adenylyl cyclase pathway alleviating problems with the hyporesponsiveness of the receptor. 

 

 

 

 

Publications

The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Brilliant blue FCF is a nontoxic dye for saphenous vein graft marking that abrogates response to injury. Hocking KM, Luo W, Li FD, Komalavilas P, Brophy C, Cheung-Flynn J (2016) J Vasc Surg 64(1): 210-8
    › Citation · 25704409 (PubMed) · PMC4544660 (PubMed Central)
  2. Brilliant blue FCF as an alternative dye for saphenous vein graft marking: effect on conduit function. Voskresensky IV, Wise ES, Hocking KM, Li FD, Osgood MJ, Komalavilas P, Brophy C, Cheung-Flynn J (2014) JAMA Surg 149(11): 1176-81
    › Citation · 25251505 (PubMed) · PMC4237645 (PubMed Central)
  3. Pressure control during preparation of saphenous veins. Li FD, Eagle S, Brophy C, Hocking KM, Osgood M, Komalavilas P, Cheung-Flynn J (2014) JAMA Surg 149(7): 655-62
    › Citation · 24759942 (PubMed) · PMC4102634 (PubMed Central)
  4. Surgical vein graft preparation promotes cellular dysfunction, oxidative stress, and intimal hyperplasia in human saphenous vein. Osgood MJ, Hocking KM, Voskresensky IV, Li FD, Komalavilas P, Cheung-Flynn J, Brophy CM (2014) J Vasc Surg 60(1): 202-11
    › Citation · 23911244 (PubMed) · PMC3926896 (PubMed Central)
  5. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries. Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy CM, Komalavilas P (2013) PLoS One 8(4): e60986
    › Citation · 23593369 (PubMed) · PMC3625185 (PubMed Central)
  6. Cell-permeant peptide inhibitors of vasospasm and intimal hyperplasia. Osgood MJ, Flynn CR, Komalavilas P, Brophy C (2013) Vascular 21(1): 46-53
    › Citation · 23104826 (PubMed) · PMC4180429 (PubMed Central)
  7. Intimal thickness associated with endothelial dysfunction in human vein grafts. Li FD, Sexton KW, Hocking KM, Osgood MJ, Eagle S, Cheung-Flynn J, Brophy CM, Komalavilas P (2013) J Surg Res 180(1): e55-62
    › Citation · 22763213 (PubMed) · PMC3515722 (PubMed Central)
  8. Role of the renin-angiotensin system in the pathogenesis of intimal hyperplasia: therapeutic potential for prevention of vein graft failure? Osgood MJ, Harrison DG, Sexton KW, Hocking KM, Voskresensky IV, Komalavilas P, Cheung-Flynn J, Guzman RJ, Brophy CM (2012) Ann Vasc Surg 26(8): 1130-44
    › Citation · 22445245 (PubMed) · PMC4189806 (PubMed Central)
  9. Inhibition of Mitogen Activated Protein Kinase Activated Protein Kinase II with MMI-0100 reduces intimal hyperplasia ex vivo and in vivo. Muto A, Panitch A, Kim N, Park K, Komalavilas P, Brophy CM, Dardik A (2012) Vascul Pharmacol 56(1-2): 47-55
    › Citation · 22024359 (PubMed) · PMC3268886 (PubMed Central)
  10. Surgical skin markers impair human saphenous vein graft smooth muscle and endothelial function. Eagle S, Brophy CM, Komalavilas P, Hocking K, Putumbaka G, Osgood M, Sexton K, Leacche M, Cheung-Flynn J (2011) Am Surg 77(7): 922-8
    › Citation · 21944360 (PubMed) · PMC3957273 (PubMed Central)
  11. Detrimental effects of mechanical stretch on smooth muscle function in saphenous veins. Hocking KM, Brophy C, Rizvi SZ, Komalavilas P, Eagle S, Leacche M, Balaguer JM, Cheung-Flynn J (2011) J Vasc Surg 53(2): 454-60
    › Citation · 21146345 (PubMed) · PMC3053010 (PubMed Central)
  12. A novel cell permeant peptide inhibitor of MAPKAP kinase II inhibits intimal hyperplasia in a human saphenous vein organ culture model. Lopes LB, Brophy CM, Flynn CR, Yi Z, Bowen BP, Smoke C, Seal B, Panitch A, Komalavilas P (2010) J Vasc Surg 52(6): 1596-607
    › Citation · 20864298 (PubMed) · PMC3005888 (PubMed Central)
  13. The small heat shock protein, HSPB6, in muscle function and disease. Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM (2010) Cell Stress Chaperones 15(1): 1-11
    › Citation · 19568960 (PubMed) · PMC2866971 (PubMed Central)
  14. Inhibition of HSP27 phosphorylation by a cell-permeant MAPKAP Kinase 2 inhibitor. Lopes LB, Flynn C, Komalavilas P, Panitch A, Brophy CM, Seal BL (2009) Biochem Biophys Res Commun 382(3): 535-9
    › Citation · 19289101 (PubMed) · PMC2745729 (PubMed Central)
  15. Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-beta1-induced CTGF expression in keloid fibroblasts. Lopes LB, Furnish EJ, Komalavilas P, Flynn CR, Ashby P, Hansen A, Ly DP, Yang GP, Longaker MT, Panitch A, Brophy CM (2009) J Invest Dermatol 129(3): 590-8
    › Citation · 18787533 (PubMed) · PMC2740368 (PubMed Central)
  16. Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Lopes LB, Furnish E, Komalavilas P, Seal BL, Panitch A, Bentley MV, Brophy CM (2008) Eur J Pharm Biopharm 68(2): 441-5
    › Primary publication · 18035527 (PubMed) · PMC2819010 (PubMed Central)
  17. The small heat shock-related protein, HSP20, is a cAMP-dependent protein kinase substrate that is involved in airway smooth muscle relaxation. Komalavilas P, Penn RB, Flynn CR, Thresher J, Lopes LB, Furnish EJ, Guo M, Pallero MA, Murphy-Ullrich JE, Brophy CM (2008) Am J Physiol Lung Cell Mol Physiol 294(1): L69-78
    › Citation · 17993590 (PubMed) · PMC2757925 (PubMed Central)
  18. Phosphorylation and activation of a transducible recombinant form of human HSP20 in Escherichia coli. Flynn CR, Smoke CC, Furnish E, Komalavilas P, Thresher J, Yi Z, Mandarino LJ, Brophy CM (2007) Protein Expr Purif 52(1): 50-8
    › Citation · 17084643 (PubMed) · PMC1839877 (PubMed Central)
  19. Role of the small heat shock proteins in regulating vascular smooth muscle tone. McLemore EC, Tessier DJ, Thresher J, Komalavilas P, Brophy CM (2005) J Am Coll Surg 201(1): 30-6
    › Citation · 15978441 (PubMed)
  20. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Lopes LB, Brophy CM, Furnish E, Flynn CR, Sparks O, Komalavilas P, Joshi L, Panitch A, Bentley MV (2005) Pharm Res 22(5): 750-7
    › Citation · 15906170 (PubMed)
  21. Transduction of phosphorylated heat shock-related protein 20, HSP20, prevents vasospasm of human umbilical artery smooth muscle. Flynn CR, Brophy CM, Furnish EJ, Komalavilas P, Tessier D, Thresher J, Joshi L (2005) J Appl Physiol (1985) 98(5): 1836-45
    › Primary publication · 15829720 (PubMed)
  22. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. Dreiza CM, Brophy CM, Komalavilas P, Furnish EJ, Joshi L, Pallero MA, Murphy-Ullrich JE, von Rechenberg M, Ho YS, Richardson B, Xu N, Zhen Y, Peltier JM, Panitch A (2005) FASEB J 19(2): 261-3
    › Primary publication · 15598710 (PubMed)
  23. Transducible recombinant small heat shock-related protein, HSP20, inhibits vasospasm and platelet aggregation. McLemore EC, Tessier DJ, Flynn CR, Furnish EJ, Komalavilas P, Thresher JS, Joshi L, Stone WM, Fowl RJ, Brophy CM (2004) Surgery 136(3): 573-8
    › Primary publication · 15349104 (PubMed)
  24. Transduction of peptide analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. Tessier DJ, Komalavilas P, Liu B, Kent CK, Thresher JS, Dreiza CM, Panitch A, Joshi L, Furnish E, Stone W, Fowl R, Brophy CM (2004) J Vasc Surg 40(1): 106-14
    › Primary publication · 15218470 (PubMed)
  25. Heat shock-related protein 20 (HSP20) in cardiomyocytes. Brophy CM, Komalavilas P (2004) Circ Res 94(10): e85
    › Primary publication · 15166117 (PubMed)
  26. Sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of the heat shock-related protein 20 (HSP20). Tessier DJ, Komalavilas P, McLemore E, Thresher J, Brophy CM (2004) J Surg Res 118(1): 21-5
    › Primary publication · 15093712 (PubMed)
  27. The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. Tessier DJ, Komalavilas P, Panitch A, Joshi L, Brophy CM (2003) J Surg Res 111(1): 152-7
    › Primary publication · 12842460 (PubMed)
  28. Transduction of biologically active motifs of the small heat shock-related protein HSP20 leads to relaxation of vascular smooth muscle. Flynn CR, Komalavilas P, Tessier D, Thresher J, Niederkofler EE, Dreiza CM, Nelson RW, Panitch A, Joshi L, Brophy CM (2003) FASEB J 17(10): 1358-60
    › Primary publication · 12738803 (PubMed)
  29. Phosphorylation of the heat shock-related protein, HSP20, mediates cyclic nucleotide-dependent relaxation. Woodrum D, Pipkin W, Tessier D, Komalavilas P, Brophy CM (2003) J Vasc Surg 37(4): 874-81
    › Primary publication · 12663991 (PubMed)
  30. Localization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart. Pipkin W, Johnson JA, Creazzo TL, Burch J, Komalavilas P, Brophy C (2003) Circulation 107(3): 469-76
    › Primary publication · 12551873 (PubMed)
  31. cGMP-dependent protein kinase expression restores contractile function in cultured vascular smooth muscle cells. Brophy CM, Woodrum DA, Pollock J, Dickinson M, Komalavilas P, Cornwell TL, Lincoln TM (2002) J Vasc Res 39(2): 95-103
    › Primary publication · 12011581 (PubMed)
  32. PI3-kinase/Akt modulates vascular smooth muscle tone via cAMP signaling pathways. Komalavilas P, Mehta S, Wingard CJ, Dransfield DT, Bhalla J, Woodrum JE, Molinaro JR, Brophy CM (2001) J Appl Physiol (1985) 91(4): 1819-27
    › Primary publication · 11568168 (PubMed)
  33. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. Komalavilas P, Shah PK, Jo H, Lincoln TM (1999) J Biol Chem 274(48): 34301-9
    › Primary publication · 10567406 (PubMed)
  34. Analysis of expression of cGMP-dependent protein kinase in rabbit heart cells. Kumar R, Joyner RW, Komalavilas P, Lincoln TM (1999) J Pharmacol Exp Ther 291(3): 967-75
    › Citation · 10565812 (PubMed)
  35. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide. Weisbrod RM, Griswold MC, Yaghoubi M, Komalavilas P, Lincoln TM, Cohen RA (1998) Br J Pharmacol 125(8): 1695-707
    › Primary publication · 9886761 (PubMed) · PMC1565749 (PubMed Central)
  36. Protein kinase G is not essential to NO-cGMP modulation of basal tone in rat pulmonary circulation. Fouty B, Komalavilas P, Muramatsu M, Cohen A, McMurtry IF, Lincoln TM, Rodman DM (1998) Am J Physiol 274(2): H672-8
    › Primary publication · 9486273 (PubMed)
  37. Cyclic GMP-dependent protein kinase in nitric oxide signaling. Lincoln TM, Cornwell TL, Komalavilas P, Boerth N (1996) Methods Enzymol : 149-66
    › Primary publication · 8791645 (PubMed)
  38. Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. Komalavilas P, Lincoln TM (1996) J Biol Chem 271(36): 21933-8
    › Primary publication · 8702997 (PubMed)
  39. cGMP signaling through cAMP- and cGMP-dependent protein kinases. Lincoln TM, Komalavilas P, Boerth NJ, MacMillan-Crow LA, Cornwell TL (1995) Adv Pharmacol : 305-22
    › Primary publication · 8562442 (PubMed)
  40. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Lincoln TM, Komalavilas P, Cornwell TL (1994) Hypertension 23(6 Pt 2): 1141-7
    › Primary publication · 8206604 (PubMed)
  41. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. Komalavilas P, Lincoln TM (1994) J Biol Chem 269(12): 8701-7
    › Primary publication · 8132598 (PubMed)
  42. Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. Komalavilas P, Zhu JK, Nothnagel EA (1991) J Biol Chem 266(24): 15956-65
    › Citation · 1874742 (PubMed)