Julian Hillyer
Last active: 2/5/2016


The Hillyer Lab is interested in basic aspects of mosquito immunology and physiology, focusing on the mechanical and molecular bases of hemolymph (blood) propulsion, and the immunological interaction between mosquitoes and pathogens in the hemocoel (body cavity). Given that chemical and biological insecticides function in the mosquito hemocoel, and that disease-causing pathogens traverse this compartment prior to being transmitted, we expect that our research will contribute to the development of novel pest and disease control strategies.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Insect immunology and hematopoiesis. Hillyer JF (2016) Dev Comp Immunol : 102-18
    › Primary publication · 26695127 (PubMed) · PMC4775421 (PubMed Central)
  2. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow. Sigle LT, Hillyer JF (2016) Dev Comp Immunol : 90-101
    › Primary publication · 26526332 (PubMed)
  3. Acceptance of the 2015 Henry Baldwin Ward Medal: My Journey in Parasitology, and with Parasitologists. Hillyer JF (2015) J Parasitol 101(6): 623-6
    › Primary publication · 26335281 (PubMed)
  4. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Hillyer JF, Estévez-Lao TY, Mirzai HE (2015) Comp Biochem Physiol A Mol Integr Physiol : 49-57
    › Primary publication · 26099947 (PubMed)
  5. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Hillyer JF (2015) Integr Comp Biol 55(5): 843-55
    › Primary publication · 25898841 (PubMed)
  6. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase. Ellison HE, Estévez-Lao TY, Murphree CS, Hillyer JF (2015) J Insect Physiol : 1-9
    › Primary publication · 25640058 (PubMed)
  7. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae. League GP, Onuh OC, Hillyer JF (2015) J Exp Biol 218(Pt 3): 370-80
    › Primary publication · 25524976 (PubMed) · PMC4317240 (PubMed Central)
  8. Mosquito hemocyte-mediated immune responses. Hillyer JF, Strand MR (2014) Curr Opin Insect Sci : 14-21
    › Primary publication · 25309850 (PubMed) · PMC4190037 (PubMed Central)
  9. Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases. Kong L, Lu A, Guan J, Yang B, Li M, Hillyer JF, Ramarao N, Söderhäll K, Liu C, Ling E (2015) Arch Insect Biochem Physiol 88(1): 64-84
    › Primary publication · 25042057 (PubMed)
  10. Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae. Boppana S, Hillyer JF (2014) J Exp Biol 217(Pt 17): 3006-14
    › Primary publication · 24948635 (PubMed)
  11. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Raphemot R, Estévez-Lao TY, Rouhier MF, Piermarini PM, Denton JS, Hillyer JF (2014) Insect Biochem Mol Biol : 10-9
    › Primary publication · 24855023 (PubMed) · PMC4121989 (PubMed Central)
  12. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae. Hillyer JF, Estévez-Lao TY, de la Parte LE (2014) Gen Comp Endocrinol : 15-25
    › Primary publication · 24747482 (PubMed)
  13. Recombinant Drosophila prophenoloxidase 1 is sequentially cleaved by α-chymotrypsin during in vitro activation. Lu A, Li X, Hillyer JF, Beerntsen BT, Söderhäll K, Ling E (2014) Biochimie : 154-65
    › Primary publication · 24657220 (PubMed)
  14. Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses. Estévez-Lao TY, Hillyer JF (2014) Insect Biochem Mol Biol : 12-22
    › Primary publication · 24200842 (PubMed)
  15. FlyNap (triethylamine) increases the heart rate of mosquitoes and eliminates the cardioacceleratory effect of the neuropeptide CCAP. Chen W, Hillyer JF (2013) PLoS One 8(7): e70414
    › Primary publication · 23875027 (PubMed) · PMC3713048 (PubMed Central)
  16. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. King JG, Hillyer JF (2013) BMC Biol : 55
    › Primary publication · 23631603 (PubMed) · PMC3660217 (PubMed Central)
  17. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei. Xu J, Hillyer JF, Coulibaly B, Sacko M, Dao A, Niaré O, Riehle MM, Traoré SF, Vernick KD (2013) PLoS One 8(4): e61181
    › Primary publication · 23593423 (PubMed) · PMC3620233 (PubMed Central)
  18. Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae. Estévez-Lao TY, Boyce DS, Honegger HW, Hillyer JF (2013) J Exp Biol 216(Pt 4): 601-13
    › Primary publication · 23364571 (PubMed)
  19. Infection-induced interaction between the mosquito circulatory and immune systems. King JG, Hillyer JF (2012) PLoS Pathog 8(11): e1003058
    › Primary publication · 23209421 (PubMed) · PMC3510235 (PubMed Central)
  20. Complex effects of temperature on mosquito immune function. Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB (2012) Proc Biol Sci 279(1741): 3357-66
    › Primary publication · 22593107 (PubMed) · PMC3385736 (PubMed Central)
  21. Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology. Hillyer JF, Estévez-Lao TY, Funkhouser LJ, Aluoch VA (2012) Insect Mol Biol 21(3): 343-55
    › Primary publication · 22404523 (PubMed)
  22. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Coggins SA, Estévez-Lao TY, Hillyer JF (2012) Dev Comp Immunol 37(3-4): 390-401
    › Primary publication · 22326457 (PubMed)
  23. Members of the salivary gland surface protein (SGS) family are major immunogenic components of mosquito saliva. King JG, Vernick KD, Hillyer JF (2011) J Biol Chem 286(47): 40824-34
    › Primary publication · 21965675 (PubMed) · PMC3220476 (PubMed Central)
  24. Introduction of Bruce M. Christensen, recipient of the 2011 Clark P. Read Mentor Award. Hillyer JF (2011) J Parasitol 97(6): 974-5
    › Primary publication · 21671724 (PubMed)
  25. Bursicon-expressing neurons undergo apoptosis after adult ecdysis in the mosquito Anopheles gambiae. Honegger HW, Estévez-Lao TY, Hillyer JF (2011) J Insect Physiol 57(7): 1017-22
    › Primary publication · 21554887 (PubMed)
  26. Mosquito immunity. Hillyer JF (2010) Adv Exp Med Biol : 218-38
    › Primary publication · 21528701 (PubMed)
  27. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel. Andereck JW, King JG, Hillyer JF (2010) PLoS One 5(9): e12943
    › Primary publication · 20886066 (PubMed) · PMC2944847 (PubMed Central)
  28. Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. Aliota MT, Fuchs JF, Rocheleau TA, Clark AK, Hillyer JF, Chen CC, Christensen BM (2010) PLoS Negl Trop Dis 4(4): e666
    › Primary publication · 20421927 (PubMed) · PMC2857672 (PubMed Central)
  29. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. Glenn JD, King JG, Hillyer JF (2010) J Exp Biol 213(4): 541-50
    › Primary publication · 20118304 (PubMed)
  30. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Hillyer JF, Estévez-Lao TY (2010) Dev Comp Immunol 34(2): 141-9
    › Primary publication · 19733588 (PubMed)
  31. Transcription in mosquito hemocytes in response to pathogen exposure. Hillyer JF (2009) J Biol 8(5): 51
    › Primary publication · 19519953 (PubMed) · PMC2736665 (PubMed Central)
  32. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Hillyer JF, Barreau C, Vernick KD (2007) Int J Parasitol 37(6): 673-81
    › Primary publication · 17275826 (PubMed) · PMC1905829 (PubMed Central)
  33. Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses. Hillyer JF, Christensen BM (2005) J Histochem Cytochem 53(6): 689-98
    › Primary publication · 15928318 (PubMed)
  34. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM (2005) Cell Microbiol 7(1): 39-51
    › Primary publication · 15617522 (PubMed)
  35. Mosquito innate immunity: involvement of beta 1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Wang X, Fuchs JF, Infanger LC, Rocheleau TA, Hillyer JF, Chen CC, Christensen BM (2005) Mol Biochem Parasitol 139(1): 65-73
    › Primary publication · 15610820 (PubMed)
  36. A novel lectin with a fibrinogen-like domain and its potential involvement in the innate immune response of Armigeres subalbatus against bacteria. Wang X, Rocheleau TA, Fuchs JF, Hillyer JF, Chen CC, Christensen BM (2004) Insect Mol Biol 13(3): 273-82
    › Primary publication · 15157228 (PubMed)
  37. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity. Hillyer JF, Schmidt SL, Christensen BM (2004) Microbes Infect 6(5): 448-59
    › Primary publication · 15109959 (PubMed)
  38. Pharmacological and autoradiographical characterization of serotonin transporter-like activity in sporocysts of the human blood fluke, Schistosoma mansoni. Boyle JP, Hillyer JF, Yoshino TP (2003) J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(8): 631-41
    › Primary publication · 12861423 (PubMed)
  39. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Hillyer JF, Schmidt SL, Christensen BM (2003) Cell Tissue Res 313(1): 117-27
    › Primary publication · 12838409 (PubMed)
  40. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. Hillyer JF, Schmidt SL, Christensen BM (2003) J Parasitol 89(1): 62-9
    › Primary publication · 12659304 (PubMed)
  41. A potential role for phenylalanine hydroxylase in mosquito immune responses. Johnson JK, Rocheleau TA, Hillyer JF, Chen CC, Li J, Christensen BM (2003) Insect Biochem Mol Biol 33(3): 345-54
    › Primary publication · 12609519 (PubMed)
  42. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Hillyer JF, Christensen BM (2002) Histochem Cell Biol 117(5): 431-40
    › Primary publication · 12029490 (PubMed)
  43. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Hillyer JF, Albrecht RM (2001) J Pharm Sci 90(12): 1927-36
    › Primary publication · 11745751 (PubMed)
  44. Aedes aegypti glutamine synthetase: expression and gene structure. Smartt CT, Kiley LM, Hillyer JF, Dasgupta R, Christensen BM (2001) Gene 274(1-2): 35-45
    › Primary publication · 11674996 (PubMed)
  45. A novel member of the RING-finger gene family associated with reproductive tissues of the mosquito, Aaedes aegypti. Zhao X, Smartt CT, Hillyer JF, Christensen BM (2000) Insect Mol Biol 9(3): 301-8
    › Primary publication · 10886414 (PubMed)
  46. Correlative Instrumental Neutron Activation Analysis, Light Microscopy, Transmission Electron Microscopy, and X-ray Microanalysis for Qualitative and Quantitative Detection of Colloidal Gold Spheres in Biological Specimens. Hillyer JF, Albrecht RM (1998) Microsc Microanal 4(5): 481-490
    › Primary publication · 9990870 (PubMed)