Dylan Burnette
Last active: 11/14/2018


Cellular contractile forces generated by the molecular motor, myosin II, drive organismal development, muscle contraction, and the progression of force dependent diseases such as cancer. Myosin II molecules oligomerize to assemble filaments capable of pulling on actin to generate contractile forces. The Burnette lab is currently focused on two areas. First, we are interested in how non-myosin II filaments drive cytokinesis at the end of mitosis. Secondly, we are investigating how muscle myosin II filaments assemble to create the core of the  sarcomere within heart muscle cells. 


Featured publications are shown below:

  1. UNC-45a promotes myosin folding and stress fiber assembly. Lehtimäki JI, Fenix AM, Kotila TM, Balistreri G, Paavolainen L, Varjosalo M, Burnette DT, Lappalainen P (2017) J Cell Biol 216(12): 4053-4072
    › Primary publication · 29055011 (PubMed) · PMC5716280 (PubMed Central)
  2. Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells. Balikov DA, Crowder SW, Boire TC, Lee JB, Gupta MK, Fenix AM, Lewis HN, Ambrose CM, Short PA, Kim CS, Burnette DT, Reilly MA, Murthy NS, Kang ML, Kim WS, Sung HJ (2017) ACS Appl Mater Interfaces 9(27): 22994-23006
    › Primary publication · 28621931 (PubMed) · PMC5687519 (PubMed Central)
  3. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis. Taneja N, Fenix AM, Rathbun L, Millis BA, Tyska MJ, Hehnly H, Burnette DT (2016) Sci Rep : 29846
    › Primary publication · 27432211 (PubMed) · PMC4949487 (PubMed Central)
  4. Expansion and concatenation of non-muscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis. Fenix AM, Taneja N, Buttler CA, Lewis J, Van Engelenburg SB, Ohi R, Burnette DT (2016) Mol Biol Cell
    › Primary publication · 26960797 (PubMed) · PMC4850034 (PubMed Central)
  5. ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization. Sengupta P, Satpute-Krishnan P, Seo AY, Burnette DT, Patterson GH, Lippincott-Schwartz J (2015) Proc Natl Acad Sci U S A 112(49): E6752-61
    › Primary publication · 26598700 (PubMed) · PMC4679030 (PubMed Central)
  6. A small part of myosin IIB takes on a big role in cell polarity. Fenix AM, Burnette DT (2015) J Cell Biol 209(1): 11-2
    › Primary publication · 25869662 (PubMed) · PMC4395479 (PubMed Central)
  7. Intracellular and extracellular forces drive primary cilia movement. Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF (2015) Proc Natl Acad Sci U S A 112(5): 1410-5
    › Primary publication · 25605896 (PubMed) · PMC4321243 (PubMed Central)
  8. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. Burnette DT, Shao L, Ott C, Pasapera AM, Fischer RS, Baird MA, Der Loughian C, Delanoe-Ayari H, Paszek MJ, Davidson MW, Betzig E, Lippincott-Schwartz J (2014) J Cell Biol 205(1): 83-96
    › Primary publication · 24711500 (PubMed) · PMC3987145 (PubMed Central)
  9. Superresolution imaging with standard fluorescent probes. Millis BA, Burnette DT, Lippincott-Schwartz J, Kachar B (2013) Curr Protoc Cell Biol : Unit 21.8.
    › Primary publication · 24510788 (PubMed) · PMC3970242 (PubMed Central)
  10. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B (2011) Proc Natl Acad Sci U S A 108(52): 21081-6
    › Primary publication · 22167805 (PubMed) · PMC3248526 (PubMed Central)
  11. Bayesian localization microscopy reveals nanoscale podosome dynamics. Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R (2011) Nat Methods 9(2): 195-200
    › Primary publication · 22138825 (PubMed) · PMC3272474 (PubMed Central)
  12. A role for actin arcs in the leading-edge advance of migrating cells. Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW, Kachar B, Lippincott-Schwartz J (2011) Nat Cell Biol 13(4): 371-81
    › Primary publication · 21423177 (PubMed) · PMC3646481 (PubMed Central)
  13. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Burnette DT, Ji L, Schaefer AW, Medeiros NA, Danuser G, Forscher P (2008) Dev Cell 15(1): 163-9
    › Primary publication · 18606149 (PubMed) · PMC2548298 (PubMed Central)
  14. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Burnette DT, Schaefer AW, Ji L, Danuser G, Forscher P (2007) Nat Cell Biol 9(12): 1360-9
    › Primary publication · 18026092 (PubMed)
  15. Myosin II functions in actin-bundle turnover in neuronal growth cones. Medeiros NA, Burnette DT, Forscher P (2006) Nat Cell Biol 8(3): 215-26
    › Primary publication · 16501565 (PubMed)
  16. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL (2005) Curr Biol 15(18): 1695-9
    › Primary publication · 16169494 (PubMed)
  17. Mutations of tubulin glycylation sites reveal cross-talk between the C termini of alpha- and beta-tubulin and affect the ciliary matrix in Tetrahymena. Redeker V, Levilliers N, Vinolo E, Rossier J, Jaillard D, Burnette D, Gaertig J, Bré MH (2005) J Biol Chem 280(1): 596-606
    › Primary publication · 15492004 (PubMed)
  18. Cytokinesis monitoring during development; rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Matroule JY, Lam H, Burnette DT, Jacobs-Wagner C (2004) Cell 118(5): 579-90
    › Primary publication · 15339663 (PubMed)
  19. Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Zhang XF, Schaefer AW, Burnette DT, Schoonderwoert VT, Forscher P (2003) Neuron 40(5): 931-44
    › Primary publication · 14659092 (PubMed)
  20. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bré MH, Levilliers N, Gorovsky MA, Gaertig J (2000) J Cell Biol 149(5): 1097-106
    › Primary publication · 10831613 (PubMed) · PMC2174830 (PubMed Central)