Louise Rollins-Smith
Last active: 4/18/2017


The main focus of my research is developmental and comparative immunology using amphibian model systems. Currently, my laboratory is pursuing a number of questions concerning the development of the immune system and the nature of innate and adaptive immune defenses in frog skin. Understanding the immune defense mechanisms of amphibians has taken on increased importance in recent years because of the urgent problem of global amphibian declines. One focus of my research is the study of antimicrobial peptides in frog skin in defense against bacterial, viral, and fungal pathogens. Currently, we are using growth inhibition assays to test the ability of purified antimicrobial peptides to interfere with growth of specific pathogens that have been associated with global amphibian declines. Another aspect of the project will be to isolate active peptide fractions from the skin of affected and unaffected frog species to determine whether some species have better peptide defenses against specific pathogens than other species. Little is known about the conventional adaptive immune response against Batrachochytrium dendrobatidis, a skin pathogen associated with global amphibian declines. Our ongoing studies have shown that B. dendrobatidis releases factors which inhibit lymphocyte responses. Future research will investigate the specific mechanisms by which this fungus escapes immunity.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). Rodríguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA, Gutiérrez M (2017) J Ethnopharmacol : 235-254
    › Primary publication · 28034659 (PubMed)
  2. Life history linked to immune investment in developing amphibians. Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA (2016) Conserv Physiol 4(1): cow025
    › Primary publication · 27928507 (PubMed) · PMC5001151 (PubMed Central)
  3. Amphibian immunity-stress, disease, and climate change. Rollins-Smith LA (2017) Dev Comp Immunol : 111-119
    › Primary publication · 27387153 (PubMed)
  4. Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KP, Rollins-Smith LA, Walke JB, Weiss S, Woodhams DC, Harris RN (2016) Front Microbiol : 68
    › Primary publication · 26870025 (PubMed) · PMC4735675 (PubMed Central)
  5. Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KP (2015) Infect Immun 83(12): 4565-70
    › Primary publication · 26371122 (PubMed) · PMC4645405 (PubMed Central)
  6. Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens). Tatiersky L, Rollins-Smith LA, Lu R, Jardine C, Barker IK, Clark ME, Caswell JL (2015) BMC Vet Res : 191
    › Primary publication · 26253169 (PubMed) · PMC4529697 (PubMed Central)
  7. Inhibition of HIV infection by caerin 1 antimicrobial peptides. VanCompernolle S, Smith PB, Bowie JH, Tyler MJ, Unutmaz D, Rollins-Smith LA (2015) Peptides : 296-303
    › Primary publication · 26026377 (PubMed)
  8. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis. Becker MH, Walke JB, Murrill L, Woodhams DC, Reinert LK, Rollins-Smith LA, Burzynski EA, Umile TP, Minbiole KP, Belden LK (2015) Mol Ecol 24(7): 1628-41
    › Primary publication · 25737297 (PubMed)
  9. Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides. Rollins-Smith LA, Reinert LK, Burrowes PA (2015) Dis Aquat Organ 113(1): 81-3
    › Primary publication · 25667340 (PubMed)
  10. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. Piovia-Scott J, Pope K, Worth SJ, Rosenblum EB, Poorten T, Refsnider J, Rollins-Smith LA, Reinert LK, Wells HL, Rejmanek D, Lawler S, Foley J (2015) ISME J 9(7): 1570-8
    › Primary publication · 25514536 (PubMed) · PMC4478697 (PubMed Central)
  11. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Holden WM, Reinert LK, Hanlon SM, Parris MJ, Rollins-Smith LA (2015) Dev Comp Immunol 48(1): 65-75
    › Primary publication · 25218643 (PubMed)
  12. Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Fites JS, Reinert LK, Chappell TM, Rollins-Smith LA (2014) Infect Immun 82(11): 4698-706
    › Primary publication · 25156734 (PubMed) · PMC4249309 (PubMed Central)
  13. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR (2014) Nature 511(7508): 224-7
    › Primary publication · 25008531 (PubMed) · PMC4464781 (PubMed Central)
  14. Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses. Holden WM, Ebert AR, Canning PF, Rollins-Smith LA (2014) Appl Environ Microbiol 80(13): 4034-41
    › Primary publication · 24771024 (PubMed) · PMC4054225 (PubMed Central)
  15. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Holden WM, Fites JS, Reinert LK, Rollins-Smith LA (2014) Fungal Biol 118(1): 48-60
    › Primary publication · 24433676 (PubMed)
  16. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs. Groner ML, Buck JC, Gervasi S, Blaustein AR, Reinert LK, Rollins-Smith LA, Bier ME, Hempel J, Relyea RA (2013) Ecol Appl 23(6): 1443-54
    › Primary publication · 24147415 (PubMed)
  17. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Gayek AS, Dermody TS, Aune TM, Oswald-Richter K, Rollins-Smith LA (2013) Science 342(6156): 366-9
    › Primary publication · 24136969 (PubMed) · PMC3956111 (PubMed Central)
  18. Interactive effects of competition and predator cues on immune responses of leopard frogs at metamorphosis. Groner ML, Rollins-Smith LA, Reinert LK, Hempel J, Bier ME, Relyea RA (2014) J Exp Biol 217(Pt 3): 351-8
    › Primary publication · 24115058 (PubMed)
  19. Evaluation of the skin peptide defenses of the Oregon spotted frog Rana pretiosa against infection by the chytrid fungus Batrachochytrium dendrobatidis. Conlon JM, Reinert LK, Mechkarska M, Prajeep M, Meetani MA, Coquet L, Jouenne T, Hayes MP, Padgett-Flohr G, Rollins-Smith LA (2013) J Chem Ecol 39(6): 797-805
    › Primary publication · 23653106 (PubMed)
  20. Host stress response is important for the pathogenesis of the deadly amphibian disease, Chytridiomycosis, in Litoria caerulea. Peterson JD, Steffen JE, Reinert LK, Cobine PA, Appel A, Rollins-Smith L, Mendonça MT (2013) PLoS One 8(4): e62146
    › Primary publication · 23630628 (PubMed) · PMC3632538 (PubMed Central)
  21. Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. Pask JD, Cary TL, Rollins-Smith LA (2013) J Exp Biol 216(Pt 15): 2908-16
    › Primary publication · 23580715 (PubMed)
  22. Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Woodhams DC, Bell SC, Kenyon N, Alford RA, Rollins-Smith LA (2012) Fungal Biol 116(12): 1203-11
    › Primary publication · 23245614 (PubMed)
  23. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, Briggs CJ, Vredenburg VT, Voyles J (2012) Dis Aquat Organ 98(1): 11-25
    › Primary publication · 22422126 (PubMed)
  24. Towards a better understanding of the use of probiotics for preventing chytridiomycosis in Panamanian golden frogs. Becker MH, Harris RN, Minbiole KP, Schwantes CR, Rollins-Smith LA, Reinert LK, Brucker RM, Domangue RJ, Gratwicke B (2011) Ecohealth 8(4): 501-6
    › Primary publication · 22328095 (PubMed)
  25. Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Gammill WM, Fites JS, Rollins-Smith LA (2012) Dev Comp Immunol 37(1): 19-27
    › Primary publication · 22227319 (PubMed)
  26. Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Venesky MD, Wilcoxen TE, Rensel MA, Rollins-Smith L, Kerby JL, Parris MJ (2012) Oecologia 169(1): 23-31
    › Primary publication · 22038058 (PubMed)
  27. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC (2011) Integr Comp Biol 51(4): 552-62
    › Primary publication · 21816807 (PubMed)
  28. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Infect Immun 78(9): 3981-92
    › Primary publication · 20584973 (PubMed) · PMC2937463 (PubMed Central)
  29. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA (2009) Dev Comp Immunol 33(12): 1247-57
    › Primary publication · 19622371 (PubMed) · PMC2927990 (PubMed Central)
  30. Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Rollins-Smith LA, Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C (2009) Front Biosci (Schol Ed) : 68-91
    › Primary publication · 19482684 (PubMed)
  31. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Rollins-Smith LA (2009) Biochim Biophys Acta 1788(8): 1593-9
    › Primary publication · 19327341 (PubMed)
  32. A peptide of the phylloseptin family from the skin of the frog Hylomantis lemur (Phyllomedusinae) with potent in vitro and in vivo insulin-releasing activity. Abdel-Wahab YH, Power GJ, Flatt PR, Woodhams DC, Rollins-Smith LA, Conlon JM (2008) Peptides 29(12): 2136-43
    › Primary publication · 18848963 (PubMed)
  33. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama. Woodhams DC, Kilburn VL, Reinert LK, Voyles J, Medina D, Ibáñez R, Hyatt AD, Boyle DG, Pask JD, Green DM, Rollins-Smith LA (2008) Ecohealth 5(3): 268-74
    › Primary publication · 18807089 (PubMed)