Joey Barnett
Last active: 4/15/2019


The goal of our laboratory is to determine the common mechanisms by which growth factors mediate and influence organ formation during embryogenesis. We have a special interest in heart formation in the chick and currently focus on the Transforming Growth Factor-beta (TGF beta) family of peptide growth factors in atrioventricular (AV) cushion transformation and coronary vessel formation in the heart. Localized epithelial-mesenchymal transformation in specific regions of the heart, including the AV cushion and proepicardium, gives rise to the valves and membranous septa of the heart and coronary vessels, respectively. Using specific antibodies to immunolocalize TGF beta receptor types and to block specific receptor types in an in vitro model of AV cushion transformation, we have identified the TGF beta receptor complex that mediates transformation. Further, misexpression of components of this complex by viral gene transfer converts normally unresponsive ventricular endocardial cells to transforming cells confirming the roles of specific receptors and downstream signaling molecules. Experiments in the proepicardium indicate the TGF beta receptors play a similar role in coronary vessel formation. Future experiments are designed to identify downstream components of receptor signaling and examine the role of this signaling complex in other sites in the embryo. In addition, a number of strategies are being used to identify genes expressed by the AV cushion, developing valves, and proepicardium. Finally, conditionally null mice are being generated to confirm and extend these results in mammals. These concerted strategies are directed at determining the role that growth factors, like TGF beta, play in organ formation during embryogenesis.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification. Yuasa M, Mignemi NA, Nyman JS, Duvall CL, Schwartz HS, Okawa A, Yoshii T, Bhattacharjee G, Zhao C, Bible JE, Obremskey WT, Flick MJ, Degen JL, Barnett JV, Cates JM, Schoenecker JG (2015) J Clin Invest 125(9): 3723
    › Primary publication · 26325037 (PubMed) · PMC4588290 (PubMed Central)
  2. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification. Yuasa M, Mignemi NA, Nyman JS, Duvall CL, Schwartz HS, Okawa A, Yoshii T, Bhattacharjee G, Zhao C, Bible JE, Obremskey WT, Flick MJ, Degen JL, Barnett JV, Cates JM, Schoenecker JG (2015) J Clin Invest 125(8): 3117-31
    › Primary publication · 26214526 (PubMed) · PMC4563750 (PubMed Central)
  3. Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility. Allison P, Espiritu D, Barnett JV, Camenisch TD (2015) Cell Signal 27(3): 453-9
    › Primary publication · 25499979 (PubMed) · PMC5604324 (PubMed Central)
  4. Hypertension is associated with preamyloid oligomers in human atrium: a missing link in atrial pathophysiology? Sidorova TN, Mace LC, Wells KS, Yermalitskaya LV, Su PF, Shyr Y, Atkinson JB, Fogo AB, Prinsen JK, Byrne JG, Petracek MR, Greelish JP, Hoff SJ, Ball SK, Glabe CG, Brown NJ, Barnett JV, Murray KT (2014) J Am Heart Assoc 3(6): e001384
    › Primary publication · 25468655 (PubMed) · PMC4338732 (PubMed Central)
  5. Reactive γ-ketoaldehydes promote protein misfolding and preamyloid oligomer formation in rapidly-activated atrial cells. Sidorova TN, Yermalitskaya LV, Mace LC, Wells KS, Boutaud O, Prinsen JK, Davies SS, Roberts LJ, Dikalov SI, Glabe CG, Amarnath V, Barnett JV, Murray KT (2015) J Mol Cell Cardiol : 295-302
    › Primary publication · 25463275 (PubMed) · PMC4302000 (PubMed Central)
  6. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL (2015) Dev Dyn 244(2): 122-33
    › Primary publication · 25382630 (PubMed) · PMC4310801 (PubMed Central)
  7. The hyperglycemic byproduct methylglyoxal impairs anticoagulant activity through covalent adduction of antithrombin III. Jacobson R, Mignemi N, Rose K, O'Rear L, Sarilla S, Hamm HE, Barnett JV, Verhamme IM, Schoenecker J (2014) Thromb Res 134(6): 1350-7
    › Primary publication · 25307422 (PubMed) · PMC4337957 (PubMed Central)
  8. Cardiac epithelial-mesenchymal transition is blocked by monomethylarsonous acid (III). Huang T, Barnett JV, Camenisch TD (2014) Toxicol Sci 142(1): 225-38
    › Primary publication · 25145660 (PubMed) · PMC4334812 (PubMed Central)
  9. The temporal and spatial development of vascularity in a healing displaced fracture. Yuasa M, Mignemi NA, Barnett JV, Cates JM, Nyman JS, Okawa A, Yoshii T, Schwartz HS, Stutz CM, Schoenecker JG (2014) Bone : 208-21
    › Primary publication · 25016962 (PubMed)
  10. Quantitative Imaging of Preamyloid Oligomers, a Novel Structural Abnormality, in Human Atrial Samples. Sidorova TN, Mace LC, Wells KS, Yermalitskaya LV, Su PF, Shyr Y, Byrne JG, Petracek MR, Greelish JP, Hoff SJ, Ball SK, Glabe CG, Brown NJ, Barnett JV, Murray KT (2014) J Histochem Cytochem 62(7): 479-87
    › Primary publication · 24789805 (PubMed) · PMC4072180 (PubMed Central)
  11. Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells. Sewell-Loftin MK, DeLaughter DM, Peacock JR, Brown CB, Baldwin HS, Barnett JV, Merryman WD (2014) Biomaterials 35(9): 2809-15
    › Primary publication · 24433835 (PubMed) · PMC3950274 (PubMed Central)
  12. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Kain KH, Miller JW, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A (2014) Dev Dyn 243(2): 216-28
    › Primary publication · 24357262 (PubMed) · PMC4164046 (PubMed Central)
  13. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic. Allison P, Huang T, Broka D, Parker P, Barnett JV, Camenisch TD (2013) Toxicol Appl Pharmacol 272(1): 147-53
    › Primary publication · 23732083 (PubMed) · PMC3972124 (PubMed Central)
  14. Spatial transcriptional profile of the chick and mouse endocardial cushions identify novel regulators of endocardial EMT in vitro. DeLaughter DM, Christodoulou DC, Robinson JY, Seidman CE, Baldwin HS, Seidman JG, Barnett JV (2013) J Mol Cell Cardiol : 196-204
    › Primary publication · 23557753 (PubMed) · PMC3659811 (PubMed Central)
  15. Regulation of the activity and expression of aryl hydrocarbon receptor by ethanol in mouse hepatic stellate cells. Zhang HF, Lin XH, Yang H, Zhou LC, Guo YL, Barnett JV, Guo ZM (2012) Alcohol Clin Exp Res 36(11): 1873-81
    › Primary publication · 22486318 (PubMed) · PMC3462894 (PubMed Central)
  16. Collagen gel analysis of epithelial-mesenchymal transition in the embryo heart: an in vitro model system for the analysis of tissue interaction, signal transduction, and environmental effects. Lencinas A, Tavares AL, Barnett JV, Runyan RB (2011) Birth Defects Res C Embryo Today 93(4): 298-311
    › Primary publication · 22271679 (PubMed)
  17. BMP2 signals loss of epithelial character in epicardial cells but requires the Type III TGFβ receptor to promote invasion. Hill CR, Sanchez NS, Love JD, Arrieta JA, Hong CC, Brown CB, Austin AF, Barnett JV (2012) Cell Signal 24(5): 1012-22
    › Primary publication · 22237159 (PubMed) · PMC3288519 (PubMed Central)
  18. TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Sánchez NS, Barnett JV (2012) Cell Signal 24(2): 539-548
    › Primary publication · 22033038 (PubMed) · PMC3237859 (PubMed Central)
  19. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Doetschman T, Barnett JV, Runyan RB, Camenisch TD, Heimark RL, Granzier HL, Conway SJ, Azhar M (2012) Cell Tissue Res 347(1): 203-23
    › Primary publication · 21953136 (PubMed) · PMC3328790 (PubMed Central)
  20. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV (2012) Cell Signal 24(1): 247-56
    › Primary publication · 21945156 (PubMed) · PMC3208316 (PubMed Central)
  21. The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Sánchez NS, Hill CR, Love JD, Soslow JH, Craig E, Austin AF, Brown CB, Czirok A, Camenisch TD, Barnett JV (2011) Dev Biol 358(2): 331-43
    › Primary publication · 21871877 (PubMed) · PMC3183347 (PubMed Central)
  22. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV (2011) Birth Defects Res A Clin Mol Teratol 91(6): 511-25
    › Primary publication · 21538818 (PubMed) · PMC4824950 (PubMed Central)
  23. BMP-2 and TGFβ2 shared pathways regulate endocardial cell transformation. Townsend TA, Robinson JY, Deig CR, Hill CR, Misfeldt A, Blobe GC, Barnett JV (2011) Cells Tissues Organs 194(1): 1-12
    › Primary publication · 21212630 (PubMed) · PMC3128155 (PubMed Central)
  24. Networked-based characterization of extracellular matrix proteins from adult mouse pulmonary and aortic valves. Angel PM, Nusinow D, Brown CB, Violette K, Barnett JV, Zhang B, Baldwin HS, Caprioli RM (2011) J Proteome Res 10(2): 812-23
    › Primary publication · 21133377 (PubMed) · PMC3139330 (PubMed Central)
  25. Regulation of heart valve morphogenesis by Eph receptor ligand, ephrin-A1. Frieden LA, Townsend TA, Vaught DB, Delaughter DM, Hwang Y, Barnett JV, Chen J (2010) Dev Dyn 239(12): 3226-34
    › Primary publication · 20960543 (PubMed) · PMC3023820 (PubMed Central)
  26. TGFβ2-mediated production of hyaluronan is important for the induction of epicardial cell differentiation and invasion. Craig EA, Austin AF, Vaillancourt RR, Barnett JV, Camenisch TD (2010) Exp Cell Res 316(20): 3397-405
    › Primary publication · 20633555 (PubMed) · PMC3397912 (PubMed Central)
  27. Involvement of the MEKK1 signaling pathway in the regulation of epicardial cell behavior by hyaluronan. Craig EA, Parker P, Austin AF, Barnett JV, Camenisch TD (2010) Cell Signal 22(6): 968-76
    › Primary publication · 20159036 (PubMed) · PMC2846756 (PubMed Central)
  28. Knockdown of the transforming growth factor-beta type III receptor impairs motility and invasion of metastatic cancer cells. Criswell TL, Dumont N, Barnett JV, Arteaga CL (2008) Cancer Res 68(18): 7304-12
    › Primary publication · 18794117 (PubMed)
  29. Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. Townsend TA, Wrana JL, Davis GE, Barnett JV (2008) J Biol Chem 283(20): 13834-41
    › Primary publication · 18343818 (PubMed) · PMC2376225 (PubMed Central)
  30. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Austin AF, Compton LA, Love JD, Brown CB, Barnett JV (2008) Dev Dyn 237(2): 366-76
    › Primary publication · 18213583 (PubMed)
  31. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC (2008) J Biol Chem 283(12): 7628-37
    › Primary publication · 18184661 (PubMed)
  32. Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Compton LA, Potash DA, Brown CB, Barnett JV (2007) Circ Res 101(8): 784-91
    › Primary publication · 17704211 (PubMed)
  33. Efficient replication, and evolution of Sindbis virus genomes with non-canonical 3'A/U-rich elements (NC3ARE) in neonatal mice. James FD, Hietala KA, Eldar D, Guess TE, Cone C, Mundell NA, Mundall N, Barnett JV, Raju R (2007) Virus Genes 35(3): 651-62
    › Primary publication · 17616797 (PubMed)
  34. Transforming growth factor beta regulates the expression of the M2 muscarinic receptor in atrial myocytes via an effect on RhoA and p190RhoGAP. Park HJ, Ward SM, Desgrosellier JS, Georgescu SP, Papageorge AG, Zhuang X, Barnett JV, Galper JB (2006) J Biol Chem 281(29): 19995-20002
    › Primary publication · 16707504 (PubMed)
  35. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Compton LA, Potash DA, Mundell NA, Barnett JV (2006) Dev Dyn 235(1): 82-93
    › Primary publication · 16258965 (PubMed)
  36. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Olivey HE, Mundell NA, Austin AF, Barnett JV (2006) Dev Dyn 235(1): 50-9
    › Primary publication · 16245329 (PubMed) · PMC3160345 (PubMed Central)
  37. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Desgrosellier JS, Mundell NA, McDonnell MA, Moses HL, Barnett JV (2005) Dev Biol 280(1): 201-10
    › Primary publication · 15766759 (PubMed)
  38. Coronary vessel development: the epicardium delivers. Olivey HE, Compton LA, Barnett JV (2004) Trends Cardiovasc Med 14(6): 247-51
    › Primary publication · 15451517 (PubMed)
  39. Early events in valvulogenesis: a signaling perspective. Barnett JV, Desgrosellier JS (2003) Birth Defects Res C Embryo Today 69(1): 58-72
    › Primary publication · 12768658 (PubMed)
  40. Expression of the type III TGFbeta receptor during chick organogenesis. Olivey HE, Barnett JV, Ridley BD (2003) Anat Rec A Discov Mol Cell Evol Biol 272(1): 383-7
    › Primary publication · 12704694 (PubMed)
  41. The skeletal muscle ryanodine receptor isoform 1 is found at the intercalated discs in human and mouse hearts. Jeyakumar LH, Gleaves LA, Ridley BD, Chang P, Atkinson J, Barnett JV, Fleischer S (2002) J Muscle Res Cell Motil 23(4): 285-92
    › Primary publication · 12630702 (PubMed)
  42. Solution structure of the chick TGFbeta type II receptor ligand-binding domain. Marlow MS, Brown CB, Barnett JV, Krezel AM (2003) J Mol Biol 326(4): 989-97
    › Primary publication · 12589747 (PubMed)
  43. Transforming growth factor beta (TGFbeta ) signaling via differential activation of activin receptor-like kinases 2 and 5 during cardiac development. Role in regulating parasympathetic responsiveness. Ward SM, Desgrosellier JS, Zhuang X, Barnett JV, Galper JB (2002) J Biol Chem 277(51): 50183-9
    › Primary publication · 12393881 (PubMed)
  44. TGFbeta regulates the expression of G alpha(i2) via an effect on the localization of ras. Ward SM, Gadbut AP, Tang D, Papageorge AG, Wu L, Li G, Barnett JV, Galper JB (2002) J Mol Cell Cardiol 34(9): 1217-26
    › Primary publication · 12392895 (PubMed)
  45. NF-kappaB mediates FGF signal regulation of msx-1 expression. Bushdid PB, Chen CL, Brantley DM, Yull F, Raghow R, Kerr LD, Barnett JV (2001) Dev Biol 237(1): 107-15
    › Primary publication · 11518509 (PubMed)
  46. FKBP binding characteristics of cardiac microsomes from diverse vertebrates. Jeyakumar LH, Ballester L, Cheng DS, McIntyre JO, Chang P, Olivey HE, Rollins-Smith L, Barnett JV, Murray K, Xin HB, Fleischer S (2001) Biochem Biophys Res Commun 281(4): 979-86
    › Primary publication · 11237759 (PubMed)
  47. Molecular heterogeneity of protein kinase C expression in human ventricle. Shin HG, Barnett JV, Chang P, Reddy S, Drinkwater DC, Pierson RN, Wiley RG, Murray KT (2000) Cardiovasc Res 48(2): 285-99
    › Primary publication · 11054475 (PubMed)
  48. 1H, 13C, and 15N backbone assignments of the ligand binding domain of TGFbeta type II receptor. Marlow MS, Chim N, Brown CB, Barnett JV, Krezel AM (2000) J Biomol NMR 17(4): 349-50
    › Primary publication · 11014599 (PubMed)
  49. Ras-mediated suppression of TGFbetaRII expression in intestinal epithelial cells involves Raf-independent signaling. Bulus NM, Sheng HM, Sizemore N, Oldham SM, Barnett JV, Coffey RJ, Beauchamp DR, Barnard JA (2000) Neoplasia 2(4): 357-64
    › Primary publication · 11005570 (PubMed) · PMC1550294 (PubMed Central)
  50. Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation. Lai YT, Beason KB, Brames GP, Desgrosellier JS, Cleggett MC, Shaw MV, Brown CB, Barnett JV (2000) Dev Biol 222(1): 1-11
    › Primary publication · 10885742 (PubMed)
  51. Antibodies directed against the chicken type II TGFbeta receptor identify endothelial cells in the developing chicken and quail. Brown CB, Drake CJ, Barnett JV (1999) Dev Dyn 215(1): 79-85
    › Primary publication · 10340759 (PubMed)
  52. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Science 283(5410): 2080-2
    › Primary publication · 10092230 (PubMed)
  53. Antibodies to the Type II TGFbeta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Brown CB, Boyer AS, Runyan RB, Barnett JV (1996) Dev Biol 174(2): 248-57
    › Primary publication · 8631497 (PubMed)
  54. Co-culture of embryonic chick heart cells and ciliary ganglia induces parasympathetic responsiveness in embryonic chick heart cells. Barnett JV, Taniuchi M, Yang MB, Galper JB (1993) Biochem J : 395-9
    › Primary publication · 8503875 (PubMed) · PMC1134222 (PubMed Central)
  55. Cloning and developmental expression of the chick type II and type III TGF beta receptors. Barnett JV, Moustakas A, Lin W, Wang XF, Lin HY, Galper JB, Maas RL (1994) Dev Dyn 199(1): 12-27
    › Primary publication · 8167376 (PubMed)
  56. Decreased adenylate cyclase activity and expression of Gs alpha in human myocardium after orthotopic cardiac transplantation. Loh E, Barnett JV, Feldman AM, Couper GS, Vatner DE, Colucci WS, Galper JB (1995) Circ Res 76(5): 852-60
    › Primary publication · 7729002 (PubMed)
  57. Effect of low-density lipoproteins, mevinolin, and G proteins on Ca2+ response in cultured chick atrial cells. Tan W, Barnett JV, Pietrobon D, Hehn G, Greiser C, Marsh JD, Galper JB (1993) Am J Physiol 265(1 Pt 2): H191-7
    › Primary publication · 7688189 (PubMed)
  58. Repeated amphetamine pretreatment alters the responsiveness of striatal dopamine-stimulated adenylate cyclase to amphetamine-induced desensitization. Barnett JV, Segal DS, Kuczenski R (1987) J Pharmacol Exp Ther 242(1): 40-7
    › Primary publication · 2956412 (PubMed)
  59. Desensitization of rat striatal dopamine-stimulated adenylate cyclase after acute amphetamine administration. Barnett JV, Kuczenski R (1986) J Pharmacol Exp Ther 237(3): 820-5
    › Primary publication · 2940359 (PubMed)
  60. Effects of low density lipoproteins and mevinolin on sympathetic responsiveness in cultured chick atrial cells. Regulation of beta-adrenergic receptors and alpha s. Barnett JV, Haigh LS, Marsh JD, Galper JB (1989) J Biol Chem 264(18): 10779-86
    › Primary publication · 2471706 (PubMed)
  61. Divalent cations suppress 3',5'-adenosine monophosphate accumulation by stimulating a pertussis toxin-sensitive guanine nucleotide-binding protein in cultured bovine parathyroid cells. Chen CJ, Barnett JV, Congo DA, Brown EM (1989) Endocrinology 124(1): 233-9
    › Primary publication · 2462488 (PubMed)
  62. Development of muscarinic-cholinergic stimulation of inositol phosphate production in cultured embryonic chick atrial cells. Evidence for a switch in guanine-nucleotide-binding protein coupling. Barnett JV, Shamah SM, Lassegue B, Griendling KK, Galper JB (1990) Biochem J 271(2): 443-8
    › Primary publication · 2122888 (PubMed) · PMC1149574 (PubMed Central)
  63. Muscarinic cholinergic stimulation of inositol phosphate production in cultured embryonic chick atrial cells. Evidence for a role of two guanine-nucleotide-binding proteins. Barnett JV, Shamah SM, Lassegue B, Griendling KK, Galper JB (1990) Biochem J 271(2): 437-42
    › Primary publication · 2122887 (PubMed) · PMC1149573 (PubMed Central)
  64. The development of physiologic responsiveness to muscarinic stimulation in embryonic chick heart. Relationship to increased levels of pertussis toxin substrates. Barnett JV, Shamah SM, Galper JB (1990) Ann N Y Acad Sci : 145-54
    › Primary publication · 2113368 (PubMed)
  65. Effect of manganese (II) bis(glycinate)dichloride on Ca2+ channel function in cultured chick atrial cells. Tan W, Barnett JV, Hehn GM, Quay SC, Galper JB (1991) Toxicology 68(1): 63-73
    › Primary publication · 1714640 (PubMed)
  66. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. Ogawa S, Barnett JV, Sen L, Galper JB, Smith TW, Marsh JD (1992) J Clin Invest 89(4): 1085-93
    › Primary publication · 1313444 (PubMed) · PMC442964 (PubMed Central)