Profile

None provided

Publications

The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, Hubbell JA, Giorgio TD (2012) Int J Nanomedicine : 799-813
    › Primary publication · 22359457 (PubMed) · PMC3284223 (PubMed Central)
  2. Combinatorial polymer electrospun matrices promote physiologically-relevant cardiomyogenic stem cell differentiation. Gupta MK, Walthall JM, Venkataraman R, Crowder SW, Jung DK, Yu SS, Feaster TK, Wang X, Giorgio TD, Hong CC, Baudenbacher FJ, Hatzopoulos AK, Sung HJ (2011) PLoS One 6(12): e28935
    › Primary publication · 22216144 (PubMed) · PMC3246450 (PubMed Central)
  3. Quantification of quantum dot concentration using inductively coupled plasma-mass spectrometry (ICP-MS). Sewell SL, Higgins MM, Bell CS, Giorgio TD (2011) J Biomed Nanotechnol 7(5): 685-90
    › Primary publication · 22195486 (PubMed)
  4. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds. Yu SS, Koblin RL, Zachman AL, Perrien DS, Hofmeister LH, Giorgio TD, Sung HJ (2011) Biomacromolecules 12(12): 4357-66
    › Primary publication · 22017359 (PubMed) · PMC3237771 (PubMed Central)
  5. Emerging applications of nanotechnology for the diagnosis and management of vulnerable atherosclerotic plaques. Yu SS, Ortega RA, Reagan BW, McPherson JA, Sung HJ, Giorgio TD (2011) Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(6): 620-46
    › Primary publication · 21834059 (PubMed) · PMC5486233 (PubMed Central)
  6. The multistrata nanoparticle: an FeOx/Au core/shell enveloped in a silica-Au shell. Bell CS, Yu SS, Giorgio TD (2011) Small 7(9): 1157-62
    › Primary publication · 21456084 (PubMed)
  7. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). Yu SS, Scherer RL, Ortega RA, Bell CS, O'Neil CP, Hubbell JA, Giorgio TD (2011) J Nanobiotechnology : 7
    › Primary publication · 21352596 (PubMed) · PMC3056743 (PubMed Central)
  8. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Thomas SN, van der Vlies AJ, O'Neil CP, Reddy ST, Yu SS, Giorgio TD, Swartz MA, Hubbell JA (2011) Biomaterials 32(8): 2194-203
    › Primary publication · 21183216 (PubMed)
  9. Sensitive and multiplexed detection of proteomic antigens via quantum dot aggregation. Soman C, Giorgio T (2009) Nanomedicine 5(4): 402-9
    › Primary publication · 19523417 (PubMed)
  10. Superparamagnetic nanoparticles as a powerful systems biology characterization tool in the physiological context. Salaklang J, Steitz B, Finka A, O'Neil CP, Moniatte M, van der Vlies AJ, Giorgio TD, Hofmann H, Hubbell JA, Petri-Fink A (2008) Angew Chem Int Ed Engl 47(41): 7857-60
    › Primary publication · 18792049 (PubMed)
  11. Cationic liposomal delivery of plasmid to endothelial cells measured by quantitative flow cytometry. Tseng W, Purvis NB, Haselton FR, Giorgio TD (1996) Biotechnol Bioeng 50(5): 548-54
    › Primary publication · 18627017 (PubMed)
  12. Isolated hepatocytes in a bioartificial liver: A single group view and experience. Rozga J, Morsiani E, Lepage E, Moscioni AD, Demetriou AA, Giorgio T (1994) Biotechnol Bioeng 43(7): 645-53
    › Primary publication · 18615764 (PubMed)
  13. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage. Smith R, Sewell SL, Giorgio TD (2008) Int J Nanomedicine 3(1): 95-103
    › Primary publication · 18488420 (PubMed) · PMC2526364 (PubMed Central)
  14. Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Soman CP, Giorgio TD (2008) Langmuir 24(8): 4399-404
    › Primary publication · 18335969 (PubMed)
  15. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system. Kuhn SJ, Hallahan DE, Giorgio TD (2006) Ann Biomed Eng 34(1): 51-8
    › Primary publication · 16477503 (PubMed)
  16. Proteolytic surface functionalization enhances in vitro magnetic nanoparticle mobility through extracellular matrix. Kuhn SJ, Finch SK, Hallahan DE, Giorgio TD (2006) Nano Lett 6(2): 306-12
    › Primary publication · 16464055 (PubMed)
  17. Convective flow increases lipoplex delivery rate to in vitro cellular monolayers. Harris SS, Giorgio TD (2005) Gene Ther 12(6): 512-20
    › Primary publication · 15690063 (PubMed)
  18. Quantitation and kinetics of CD51 surface receptor expression: implications for targeted delivery. Smith RA, Giorgio TD (2004) Ann Biomed Eng 32(5): 635-44
    › Primary publication · 15171619 (PubMed)
  19. Cell-based screening: a high throughput flow cytometry platform for identification of cell-specific targeting molecules. Smith RA, Giorgio TD (2004) Comb Chem High Throughput Screen 7(2): 141-51
    › Primary publication · 15032661 (PubMed)
  20. DNA delivery to cells in culture using cationic liposomes. Wyatt SK, Giorgio TD (2004) Methods Mol Biol : 83-94
    › Primary publication · 14707371 (PubMed)
  21. DNA delivery to cells in culture using PNA clamps. Giorgio TD, Wyatt SK (2004) Methods Mol Biol : 53-66
    › Primary publication · 14707369 (PubMed)
  22. A model for the analysis of nonviral gene therapy. Banks GA, Roselli RJ, Chen R, Giorgio TD (2003) Gene Ther 10(20): 1766-75
    › Primary publication · 12939643 (PubMed)
  23. Hyperacute lung rejection in the pig-to-human model. III. Platelet receptor inhibitors synergistically modulate complement activation and lung injury. Pfeiffer S, Zorn GL, Zhang JP, Giorgio TD, Robson SC, Azimzadeh AM, Pierson RN (2003) Transplantation 75(7): 953-9
    › Primary publication · 12698079 (PubMed)
  24. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Hallahan D, Geng L, Qu S, Scarfone C, Giorgio T, Donnelly E, Gao X, Clanton J (2003) Cancer Cell 3(1): 63-74
    › Primary publication · 12559176 (PubMed)
  25. Radiation-mediated control of drug delivery. Hallahan DE, Qu S, Geng L, Cmelak A, Chakravarthy A, Martin W, Scarfone C, Giorgio T (2001) Am J Clin Oncol 24(5): 473-80
    › Primary publication · 11586099 (PubMed)
  26. Nuclear-associated plasmid, but not cell-associated plasmid, is correlated with transgene expression in cultured mammalian cells. James MB, Giorgio TD (2000) Mol Ther 1(4): 339-46
    › Primary publication · 10933952 (PubMed)
  27. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Tseng WC, Haselton FR, Giorgio TD (1999) Biochim Biophys Acta 1445(1): 53-64
    › Primary publication · 10209258 (PubMed)
  28. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. Tseng WC, Haselton FR, Giorgio TD (1997) J Biol Chem 272(41): 25641-7
    › Primary publication · 9325286 (PubMed)
  29. Development of a hybrid bioartificial liver. Rozga J, Holzman MD, Ro MS, Griffin DW, Neuzil DF, Giorgio T, Moscioni AD, Demetriou AA (1993) Ann Surg 217(5): 502-9; discussion 509-11
    › Primary publication · 8489313 (PubMed) · PMC1242831 (PubMed Central)
  30. Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells. Rozga J, Williams F, Ro MS, Neuzil DF, Giorgio TD, Backfisch G, Moscioni AD, Hakim R, Demetriou AA (1993) Hepatology 17(2): 258-65
    › Primary publication · 8428723 (PubMed)
  31. Mass transfer in a hollow fiber device used as a bioartificial liver. Giorgio TD, Moscioni AD, Rozga J, Demetriou AA (1993) ASAIO J 39(4): 886-92
    › Primary publication · 8123922 (PubMed)
  32. SC-49992--a potent and specific inhibitor of platelet aggregation. Nicholson NS, Panzer-Knodle SG, King LW, Taite BB, Keller BT, Tjoeng FS, Engleman VW, Giorgio TD, Feigen LP (1994) Thromb Res 74(5): 523-35
    › Primary publication · 8085253 (PubMed)
  33. Shear-induced platelet activation measured by flow cytometry. Purvis NB, Giorgio TD, Stelzer GT, Shults KE (1994) Ann N Y Acad Sci : 309-11
    › Primary publication · 8017786 (PubMed)
  34. The effect of bilayer composition on calcium ion transport facilitated by fluid shear stress. Giorgio TD, Yek SH (1995) Biochim Biophys Acta 1239(1): 39-44
    › Primary publication · 7548142 (PubMed)
  35. Cell size and surface area determined by flow cytometry. Purvis NB, Giorgio TD (1994) Ann N Y Acad Sci : 306-8
    › Primary publication · 7517116 (PubMed)
  36. A note on the use of Quin2 in studying shear-induced platelet aggregation. Giorgio TD, Hellums JD (1986) Thromb Res 41(3): 353-9
    › Primary publication · 3705013 (PubMed)
  37. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Peterson DM, Stathopoulos NA, Giorgio TD, Hellums JD, Moake JL (1987) Blood 69(2): 625-8
    › Primary publication · 3492225 (PubMed)
  38. A note on the use of indo-1 in studying shear-induced platelet aggregation. Giorgio TD, Hellums JD (1988) Thromb Res 50(2): 351-6
    › Primary publication · 3394120 (PubMed)
  39. Inhibition of shear stress-induced platelet activation by commercial luminescence reagents. Giorgio TD, Hellums JD (1988) Thromb Res 49(6): 643-7
    › Primary publication · 3388315 (PubMed)
  40. A cone and plate viscometer for the continuous measurement of blood platelet activation. Giorgio TD, Hellums JD (1988) Biorheology 25(4): 605-24
    › Primary publication · 3252916 (PubMed)
  41. The effects of elongational stress exposure on the activation and aggregation of blood platelets. Purvis NB, Giorgio TD (1991) Biorheology 28(5): 355-67
    › Primary publication · 1782391 (PubMed)
  42. Shear stress-facilitated calcium ion transport across lipid bilayers. Chakravarthy SR, Giorgio TD (1992) Biochim Biophys Acta 1112(2): 197-204
    › Primary publication · 1457452 (PubMed)