NOTICE: Labnodes now supports email addresses. If your email changed, please update your profile today.
Katherine Friedman
Faculty Member
Last active: 1/20/2015


None provided


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products. Sowd GA, Mody D, Eggold J, Cortez D, Friedman KL, Fanning E (2014) PLoS Pathog 10(12): e1004536
    › Primary publication · 25474690 (PubMed) · PMC4256475 (PubMed Central)
  2. Normal telomere length maintenance in Saccharomyces cerevisiae requires nuclear import of the ever shorter telomeres 1 (Est1) protein via the importin alpha pathway. Hawkins C, Friedman KL (2014) Eukaryot Cell 13(8): 1036-50
    › Primary publication · 24906415 (PubMed) · PMC4135794 (PubMed Central)
  3. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Nature 497(7450): 458-62
    › Primary publication · 23657261 (PubMed) · PMC3680789 (PubMed Central)
  4. The anaphase promoting complex contributes to the degradation of the S. cerevisiae telomerase recruitment subunit Est1p. Ferguson JL, Chao WC, Lee E, Friedman KL (2013) PLoS One 8(1): e55055
    › Primary publication · 23372810 (PubMed) · PMC3555863 (PubMed Central)
  5. A mutation in the catalytic subunit of yeast telomerase alters primer-template alignment while promoting processivity and protein-DNA binding. Bairley RC, Guillaume G, Vega LR, Friedman KL (2011) J Cell Sci 124(Pt 24): 4241-52
    › Primary publication · 22193961 (PubMed) · PMC4074303 (PubMed Central)
  6. Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. Talley JM, DeZwaan DC, Maness LD, Freeman BC, Friedman KL (2011) J Biol Chem 286(30): 26431-9
    › Primary publication · 21659533 (PubMed) · PMC3143607 (PubMed Central)
  7. Telomerase reverse transcriptase and Wnt signaling. Friedman KL (2011) Mol Cell Biol 31(12): 2366-8
    › Primary publication · 21536649 (PubMed) · PMC3133428 (PubMed Central)
  8. Chromosome end maintenance by telomerase. Osterhage JL, Friedman KL (2009) J Biol Chem 284(24): 16061-5
    › Primary publication · 19286666 (PubMed) · PMC2713563 (PubMed Central)
  9. Maize centromere mapping: a comparison of physical and genetic strategies. Okagaki RJ, Jacobs MS, Stec AO, Kynast RG, Buescher E, Rines HW, Vales MI, Riera-Lizarazu O, Schneerman M, Doyle G, Friedman KL, Staub RW, Weber DF, Kamps TL, Amarillo IF, Chase CD, Bass HW, Phillips RL (2008) J Hered 99(2): 85-93
    › Primary publication · 18216028 (PubMed)
  10. Yeast Est2p affects telomere length by influencing association of Rap1p with telomeric chromatin. Ji H, Adkins CJ, Cartwright BR, Friedman KL (2008) Mol Cell Biol 28(7): 2380-90
    › Primary publication · 18212041 (PubMed) · PMC2268414 (PubMed Central)
  11. Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Osterhage JL, Talley JM, Friedman KL (2006) Nat Struct Mol Biol 13(8): 720-8
    › Primary publication · 16862158 (PubMed)
  12. Regulation of telomere length by an N-terminal region of the yeast telomerase reverse transcriptase. Ji H, Platts MH, Dharamsi LM, Friedman KL (2005) Mol Cell Biol 25(20): 9103-14
    › Primary publication · 16199886 (PubMed) · PMC1265764 (PubMed Central)
  13. N-terminal domain of yeast telomerase reverse transcriptase: recruitment of Est3p to the telomerase complex. Friedman KL, Heit JJ, Long DM, Cech TR (2003) Mol Biol Cell 14(1): 1-13
    › Primary publication · 12529422 (PubMed) · PMC140223 (PubMed Central)
  14. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Friedman KL, Cech TR (1999) Genes Dev 13(21): 2863-74
    › Primary publication · 10557213 (PubMed) · PMC317136 (PubMed Central)
  15. CLB5-dependent activation of late replication origins in S. cerevisiae. Donaldson AD, Raghuraman MK, Friedman KL, Cross FR, Brewer BJ, Fangman WL (1998) Mol Cell 2(2): 173-82
    › Primary publication · 9734354 (PubMed)
  16. Replication profile of Saccharomyces cerevisiae chromosome VI. Friedman KL, Brewer BJ, Fangman WL (1997) Genes Cells 2(11): 667-78
    › Primary publication · 9491801 (PubMed)
  17. Multiple determinants controlling activation of yeast replication origins late in S phase. Friedman KL, Diller JD, Ferguson BM, Nyland SV, Brewer BJ, Fangman WL (1996) Genes Dev 10(13): 1595-607
    › Primary publication · 8682291 (PubMed)
  18. Analysis of the temporal program of replication initiation in yeast chromosomes. Friedman KL, Raghuraman MK, Fangman WL, Brewer BJ (1995) J Cell Sci Suppl : 51-8
    › Primary publication · 8655647 (PubMed)
  19. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Friedman KL, Brewer BJ (1995) Methods Enzymol : 613-27
    › Primary publication · 8594382 (PubMed)
  20. The topography of chromosome replication in yeast. Brewer BJ, Diller JD, Friedman KL, Kolor KM, Raghuraman MK, Fangman WL (1993) Cold Spring Harb Symp Quant Biol : 425-34
    › Primary publication · 7956056 (PubMed)