Peter Weil
Faculty Member
Last active: 11/4/2015


The focus of research in our laboratory is to understand the molecular mechanisms of eukaryotic transcription initiation. For the last ten or so years we have been examining the eukaryotic transcription factors which mediate initiation complex formation and thus represent potential targets for trans-regulation. We have utilized the simple eukaryote, Saccharomyces cerevisiae or Baker's Yeast, for our work. This organism was chosen for our studies because both biochemical and genetic approaches can be taken with yeasts. In our experiments we study the factors required for transcription initiation by RNA polymerase II (RNAP II). RNAP II transcribes the genes which encode mRNAs. We have developed methods for the solubilization, characterization and purification of the complete complement of RNAP II-specific factors, and our current focus is on one of these factors the multisubunit factor termed TFIID. All of the proteins which comprise TFIID have very interesting biochemical properties. One of the factors, known as TBP, or TATA box Binding Protein, is a sequence specific DNA binding protein which interacts with the ubiquitous TATA box promoter element. while others are not. The other subunits of TFIID presumably interact with other promoter elements, RNAPII, positive-acting transcription factors or other general transcription factors such as TFIIA, TFIIB, TFIIE, TFIIF or TFIIF.

Our immediate efforts have been expended towards cloning the yeast genes which encode these genes encoding the TFIID subunits. We have been successful in cloning the genes which encode the multiple (15 distinct genes) subunits of yeast TFIID. Our interest in cloning these genes are several and are summarized here as are the types of studies which will be the focus of our research in the future--each could comprise a student rotation project: 1) The cloned genes give us the wherewithal to overexpress the corresponding gene products. Purified factors prepared from the cloned genes will be used for in vitro mechanistic studies. 2) Using the cloned genes we are examining the structure-function relationships of these important molecules. 3) We are dissecting the genetic control elements which regulate expression of the transcription factor genes themselves. These studies are being performed with an eye towards understanding global control of macromolecular biosynthesis. 4) Finally, we are using the cloned genes, in conditionally lethal forms, to identify via suppressor analyses genes whose products interact with these multi-functional general transcription initiation factors. Specific examples of the types of studies and the results which we have obtained are listed in "Selected Publications."


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Suppression of intragenic transcription requires the MOT1 and NC2 regulators of TATA-binding protein. Koster MJ, Yildirim AD, Weil PA, Holstege FC, Timmers HT (2014) Nucleic Acids Res 42(7): 4220-9
    › Primary publication · 24459134 (PubMed) · PMC3985625 (PubMed Central)
  2. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. Layer JH, Weil PA (2013) J Biol Chem 288(32): 23273-94
    › Primary publication · 23814059 (PubMed) · PMC3743499 (PubMed Central)
  3. A novel algorithm for validating peptide identification from a shotgun proteomics search engine. Jian L, Niu X, Xia Z, Samir P, Sumanasekera C, Mu Z, Jennings JL, Hoek KL, Allos T, Howard LM, Edwards KM, Weil PA, Link AJ (2013) J Proteome Res 12(3): 1108-19
    › Primary publication · 23402659 (PubMed) · PMC3608465 (PubMed Central)
  4. New insights into the function of transcription factor TFIID from recent structural studies. Papai G, Weil PA, Schultz P (2011) Curr Opin Genet Dev 21(2): 219-24
    › Primary publication · 21420851 (PubMed) · PMC3081712 (PubMed Central)
  5. Ubiquitous antisense transcription in eukaryotes: novel regulatory mechanism or byproduct of opportunistic RNA polymerase? Layer JH, Weil PA (2009) F1000 Biol Rep : 33
    › Primary publication · 20948652 (PubMed) · PMC2924692 (PubMed Central)
  6. TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Papai G, Tripathi MK, Ruhlmann C, Layer JH, Weil PA, Schultz P (2010) Nature 465(7300): 956-60
    › Primary publication · 20559389 (PubMed) · PMC2900199 (PubMed Central)
  7. Direct transactivator-transcription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription. Layer JH, Miller SG, Weil PA (2010) J Biol Chem 285(20): 15489-15499
    › Primary publication · 20189987 (PubMed) · PMC2865315 (PubMed Central)
  8. Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P (2009) Structure 17(3): 363-73
    › Primary publication · 19278651 (PubMed) · PMC2677412 (PubMed Central)
  9. A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Arnett DR, Jennings JL, Tabb DL, Link AJ, Weil PA (2008) Mol Cell Proteomics 7(11): 2090-106
    › Primary publication · 18596064 (PubMed) · PMC2577210 (PubMed Central)
  10. The transcriptional repressor activator protein Rap1p is a direct regulator of TATA-binding protein. Bendjennat M, Weil PA (2008) J Biol Chem 283(13): 8699-710
    › Primary publication · 18195009 (PubMed) · PMC2417159 (PubMed Central)
  11. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA (2007) Mol Cell Biol 27(1): 297-311
    › Primary publication · 17074814 (PubMed) · PMC1800639 (PubMed Central)
  12. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, Link AJ (2004) Mol Cell Biol 24(16): 7249-59
    › Primary publication · 15282323 (PubMed) · PMC479721 (PubMed Central)
  13. Molecular and genetic characterization of a Taf1p domain essential for yeast TFIID assembly. Singh MV, Bland CE, Weil PA (2004) Mol Cell Biol 24(11): 4929-42
    › Primary publication · 15143185 (PubMed) · PMC416396 (PubMed Central)
  14. Mapping key functional sites within yeast TFIID. Leurent C, Sanders SL, Demény MA, Garbett KA, Ruhlmann C, Weil PA, Tora L, Schultz P (2004) EMBO J 23(4): 719-27
    › Primary publication · 14765106 (PubMed) · PMC381015 (PubMed Central)
  15. High-affinity DNA binding by a Mot1p-TBP complex: implications for TAF-independent transcription. Gumbs OH, Campbell AM, Weil PA (2003) EMBO J 22(12): 3131-41
    › Primary publication · 12805227 (PubMed) · PMC162156 (PubMed Central)
  16. Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA. Klein J, Nolden M, Sanders SL, Kirchner J, Weil PA, Melcher K (2003) J Biol Chem 278(9): 6779-86
    › Primary publication · 12501245 (PubMed)
  17. Mot1p is essential for TBP recruitment to selected promoters during in vivo gene activation. Andrau JC, Van Oevelen CJ, Van Teeffelen HA, Weil PA, Holstege FC, Timmers HT (2002) EMBO J 21(19): 5173-83
    › Primary publication · 12356733 (PubMed) · PMC129025 (PubMed Central)
  18. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I (2002) J Biol Chem 277(47): 45510-7
    › Primary publication · 12237303 (PubMed)
  19. Molecular characterization of Saccharomyces cerevisiae TFIID. Sanders SL, Garbett KA, Weil PA (2002) Mol Cell Biol 22(16): 6000-13
    › Primary publication · 12138208 (PubMed) · PMC133964 (PubMed Central)
  20. A method for plasmid purification directly from yeast. Singh MV, Weil PA (2002) Anal Biochem 307(1): 13-7
    › Primary publication · 12137773 (PubMed)
  21. Mapping histone fold TAFs within yeast TFIID. Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P (2002) EMBO J 21(13): 3424-33
    › Primary publication · 12093743 (PubMed) · PMC126091 (PubMed Central)
  22. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA (2002) Mol Cell Biol 22(13): 4723-38
    › Primary publication · 12052880 (PubMed) · PMC133885 (PubMed Central)
  23. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns. Kirschner DB, vom Baur E, Thibault C, Sanders SL, Gangloff YG, Davidson I, Weil PA, Tora L (2002) Mol Cell Biol 22(9): 3178-93
    › Primary publication · 11940675 (PubMed) · PMC133751 (PubMed Central)
  24. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA (2001) J Biol Chem 276(52): 49100-9
    › Primary publication · 11677244 (PubMed)
  25. Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Kirchner J, Sanders SL, Klebanow E, Weil PA (2001) Mol Cell Biol 21(19): 6668-80
    › Primary publication · 11533254 (PubMed) · PMC99812 (PubMed Central)
  26. Histone folds mediate selective heterodimerization of yeast TAF(II)25 with TFIID components yTAF(II)47 and yTAF(II)65 and with SAGA component ySPT7. Gangloff YG, Sanders SL, Romier C, Kirschner D, Weil PA, Tora L, Davidson I (2001) Mol Cell Biol 21(5): 1841-53
    › Primary publication · 11238921 (PubMed) · PMC86751 (PubMed Central)
  27. Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. Sanders SL, Weil PA (2000) J Biol Chem 275(18): 13895-900
    › Primary publication · 10788514 (PubMed)
  28. TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. Sanders SL, Klebanow ER, Weil PA (1999) J Biol Chem 274(27): 18847-50
    › Primary publication · 10383379 (PubMed)
  29. A rapid technique for the determination of unknown plasmid library insert DNA sequence directly from intact yeast cells. Klebanow ER, Weil PA (1999) Yeast 15(6): 527-31
    › Primary publication · 10234790 (PubMed)
  30. MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Muldrow TA, Campbell AM, Weil PA, Auble DT (1999) Mol Cell Biol 19(4): 2835-45
    › Primary publication · 10082549 (PubMed) · PMC84076 (PubMed Central)
  31. Quantitative imaging of TATA-binding protein in living yeast cells. Patterson GH, Schroeder SC, Bai Y, Weil A, Piston DW (1998) Yeast 14(9): 813-25
    › Primary publication · 9818719 (PubMed)
  32. ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Komarnitsky PB, Klebanow ER, Weil PA, Denis CL (1998) Mol Cell Biol 18(10): 5861-7
    › Primary publication · 9742103 (PubMed) · PMC109172 (PubMed Central)
  33. Biochemical and genetic characterization of the dominant positive element driving transcription ofthe yeast TBP-encoding gene, SPT15. Schroeder SC, Weil PA (1998) Nucleic Acids Res 26(18): 4186-95
    › Primary publication · 9722639 (PubMed) · PMC147844 (PubMed Central)
  34. Genetic tests of the role of Abf1p in driving transcription of the yeast TATA box bindng protein-encoding gene, SPT15. Schroeder SC, Weil PA (1998) J Biol Chem 273(31): 19884-91
    › Primary publication · 9677425 (PubMed)
  35. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Drysdale CM, Jackson BM, McVeigh R, Klebanow ER, Bai Y, Kokubo T, Swanson M, Nakatani Y, Weil PA, Hinnebusch AG (1998) Mol Cell Biol 18(3): 1711-24
    › Primary publication · 9488488 (PubMed) · PMC108886 (PubMed Central)
  36. Molecular genetic elucidation of the tripartite structure of the Schizosaccharomyces pombe 72 kDa TFIID subunit which contains a WD40 structural motif. Yamamoto T, Poon D, Weil PA, Horikoshi M (1997) Genes Cells 2(4): 245-54
    › Primary publication · 9224658 (PubMed)
  37. Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAF(II)130. Bai Y, Perez GM, Beechem JM, Weil PA (1997) Mol Cell Biol 17(6): 3081-93
    › Primary publication · 9154807 (PubMed) · PMC232161 (PubMed Central)
  38. Cloning and characterization of an essential Saccharomyces cerevisiae gene, TAF40, which encodes yTAFII40, an RNA polymerase II-specific TATA-binding protein-associated factor. Klebanow ER, Poon D, Zhou S, Weil PA (1997) J Biol Chem 272(14): 9436-42
    › Primary publication · 9083082 (PubMed)
  39. TBP-associated factors are not generally required for transcriptional activation in yeast. Moqtaderi Z, Bai Y, Poon D, Weil PA, Struhl K (1996) Nature 383(6596): 188-91
    › Primary publication · 8774887 (PubMed)
  40. Isolation and characterization of TAF25, an essential yeast gene that encodes an RNA polymerase II-specific TATA-binding protein-associated factor. Klebanow ER, Poon D, Zhou S, Weil PA (1996) J Biol Chem 271(23): 13706-15
    › Primary publication · 8662725 (PubMed)
  41. Genetic and biochemical analyses of yeast TATA-binding protein mutants. Poon D, Knittle RA, Sabelko KA, Yamamoto T, Horikoshi M, Roeder RG, Weil PA (1993) J Biol Chem 268(7): 5005-13
    › Primary publication · 8444878 (PubMed)
  42. Immunopurification of yeast TATA-binding protein and associated factors. Presence of transcription factor IIIB transcriptional activity. Poon D, Weil PA (1993) J Biol Chem 268(21): 15325-8
    › Primary publication · 8340360 (PubMed)
  43. Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Leibham D, Wong MW, Cheng TC, Schroeder S, Weil PA, Olson EN, Perry M (1994) Mol Cell Biol 14(1): 686-99
    › Primary publication · 8264638 (PubMed) · PMC358418 (PubMed Central)
  44. Yeast Taf170 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID. Poon D, Campbell AM, Bai Y, Weil PA (1994) J Biol Chem 269(37): 23135-40
    › Primary publication · 8083216 (PubMed)
  45. TFIIF-TAF-RNA polymerase II connection. Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD (1994) Genes Dev 8(23): 2868-78
    › Primary publication · 7995524 (PubMed)
  46. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein. Schroeder SC, Wang CK, Weil PA (1994) J Biol Chem 269(45): 28335-46
    › Primary publication · 7961772 (PubMed)
  47. Isolation and characterization of a novel transcription factor that binds to and activates insulin control element-mediated expression. Robinson GL, Cordle SR, Henderson E, Weil PA, Teitelman G, Stein R (1994) Mol Cell Biol 14(10): 6704-14
    › Primary publication · 7935390 (PubMed) · PMC359201 (PubMed Central)
  48. Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics. Perez-Howard GM, Weil PA, Beechem JM (1995) Biochemistry 34(25): 8005-17
    › Primary publication · 7794913 (PubMed) · PMC2891535 (PubMed Central)
  49. Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae. Poon D, Bai Y, Campbell AM, Bjorklund S, Kim YJ, Zhou S, Kornberg RD, Weil PA (1995) Proc Natl Acad Sci U S A 92(18): 8224-8
    › Primary publication · 7667272 (PubMed) · PMC41129 (PubMed Central)
  50. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. Matsui T, Segall J, Weil PA, Roeder RG (1980) J Biol Chem 255(24): 11992-6
    › Primary publication · 7440580 (PubMed)
  51. Specific transcription of homologous class III genes in yeast-soluble cell-free extracts. Klekamp MS, Weil PA (1982) J Biol Chem 257(14): 8432-41
    › Primary publication · 7045122 (PubMed)
  52. Preparative agarose gel electrophoresis of ribonucleic acid. Weil PA, Hampel A (1973) Biochemistry 12(22): 4361-7
    › Primary publication · 4750249 (PubMed)
  53. Properties of yeast class III gene transcription factor TFIIIB. Implications regarding mechanism of action. Klekamp MS, Weil PA (1987) J Biol Chem 262(16): 7878-83
    › Primary publication · 3584145 (PubMed)
  54. Novobiocin inhibits interactions required for yeast TFIIIB sequestration during stable transcription complex formation in vitro. Felts SJ, Weil PA, Chalkley R (1987) Nucleic Acids Res 15(4): 1493-506
    › Primary publication · 3547336 (PubMed) · PMC340563 (PubMed Central)
  55. Partial purification and characterization of the Saccharomyces cerevisiae transcription factor TFIIIB. Klekamp MS, Weil PA (1986) J Biol Chem 261(6): 2819-27
    › Primary publication · 3512543 (PubMed)
  56. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Horikoshi M, Wang CK, Fujii H, Cromlish JA, Weil PA, Roeder RG (1989) Nature 341(6240): 299-303
    › Primary publication · 2677740 (PubMed)
  57. Multiple mutations of the first gene of a dimeric tRNA gene abolish in vitro tRNA gene transcription. Nichols M, Bell J, Klekamp MS, Weil PA, Söll D (1989) J Biol Chem 264(29): 17084-90
    › Primary publication · 2676999 (PubMed)
  58. Purification of a yeast TATA box-binding protein that exhibits human transcription factor IID activity. Horikoshi M, Wang CK, Fujii H, Cromlish JA, Weil PA, Roeder RG (1989) Proc Natl Acad Sci U S A 86(13): 4843-7
    › Primary publication · 2662184 (PubMed) · PMC297511 (PubMed Central)
  59. Purification and characterization of Saccharomyces cerevisiae transcription factor IIIA. Wang CK, Weil PA (1989) J Biol Chem 264(2): 1092-9
    › Primary publication · 2642897 (PubMed)
  60. Pancreatic beta-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative cellular transcriptional elements. Whelan J, Poon D, Weil PA, Stein R (1989) Mol Cell Biol 9(8): 3253-9
    › Primary publication · 2552288 (PubMed) · PMC362369 (PubMed Central)
  61. Purification and properties of the Rous sarcoma virus internal enhancer binding factor. Karnitz L, Poon D, Weil PA, Chalkley R (1989) Mol Cell Biol 9(5): 1929-39
    › Primary publication · 2546054 (PubMed) · PMC362984 (PubMed Central)
  62. Yeast class III gene transcription factors and homologous RNA polymerase III form ternary transcription complexes stable to disruption by N-lauroyl-sarcosine (sarcosyl). Klekamp MS, Weil PA (1986) Arch Biochem Biophys 246(2): 783-800
    › Primary publication · 2423033 (PubMed)
  63. Cloning of the Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Hoffmann A, Horikoshi M, Wang CK, Schroeder S, Weil PA, Roeder RG (1990) Genes Dev 4(7): 1141-8
    › Primary publication · 2210373 (PubMed)
  64. Analysis of structure-function relationships of yeast TATA box binding factor TFIID. Horikoshi M, Yamamoto T, Ohkuma Y, Weil PA, Roeder RG (1990) Cell 61(7): 1171-8
    › Primary publication · 2194665 (PubMed)
  65. Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Felts SJ, Weil PA, Chalkley R (1990) Mol Cell Biol 10(5): 2390-401
    › Primary publication · 2183033 (PubMed) · PMC360587 (PubMed Central)
  66. Identification of a pancreatic beta-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Whelan J, Cordle SR, Henderson E, Weil PA, Stein R (1990) Mol Cell Biol 10(4): 1564-72
    › Primary publication · 2181278 (PubMed) · PMC362261 (PubMed Central)
  67. Purification and characterization of Saccharomyces cerevisiae transcription factor TFIIIC. Polypeptide composition defined with polyclonal antibodies. Parsons MC, Weil PA (1990) J Biol Chem 265(9): 5095-103
    › Primary publication · 2180956 (PubMed)
  68. Identification and purification of a yeast transcriptional trans-activator. The yeast homolog of the Rous sarcoma virus internal enhancer binding factor. Karnitz L, Poon D, Weil PA, Chalkley R (1990) J Biol Chem 265(11): 6131-8
    › Primary publication · 2156843 (PubMed)
  69. Insulin gene expression in nonexpressing cells appears to be regulated by multiple distinct negative-acting control elements. Cordle SR, Whelan J, Henderson E, Masuoka H, Weil PA, Stein R (1991) Mol Cell Biol 11(5): 2881-6
    › Primary publication · 2017182 (PubMed) · PMC360077 (PubMed Central)
  70. Pancreatic beta-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Cordle SR, Henderson E, Masuoka H, Weil PA, Stein R (1991) Mol Cell Biol 11(3): 1734-8
    › Primary publication · 1996119 (PubMed) · PMC369485 (PubMed Central)
  71. The conserved carboxy-terminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth. Poon D, Schroeder S, Wang CK, Yamamoto T, Horikoshi M, Roeder RG, Weil PA (1991) Mol Cell Biol 11(10): 4809-21
    › Primary publication · 1922021 (PubMed) · PMC361446 (PubMed Central)
  72. Cloning of TFC1, the Saccharomyces cerevisiae gene encoding the 95-kDa subunit of transcription factor TFIIIC. Parsons MC, Weil PA (1992) J Biol Chem 267(5): 2894-901
    › Primary publication · 1737746 (PubMed)
  73. A bipartite DNA binding domain composed of direct repeats in the TATA box binding factor TFIID. Yamamoto T, Horikoshi M, Wang J, Hasegawa S, Weil PA, Roeder RG (1992) Proc Natl Acad Sci U S A 89(7): 2844-8
    › Primary publication · 1557391 (PubMed) · PMC48759 (PubMed Central)
  74. HeLa cell deoxyribonucleic acid dependent RNA polymerases: function and properties of the class III enzymes. Weil PA, Blatti SP (1976) Biochemistry 15(7): 1500-9
    › Primary publication · 1259952 (PubMed)
  75. Partial purification and properties of calf thymus deoxyribonucleic acid dependent RNA polymerase III. Weil PA, Blatti SP (1975) Biochemistry 14(8): 1636-42
    › Primary publication · 1125192 (PubMed)
  76. Hormonal control of transcription in the rat uterus. Stimulation of deoxyribonucleic acid-dependent RNA polymerase III by estradiol. Weil PA, Sidikaro J, Stancel GM, Blatti SP (1977) J Biol Chem 252(3): 1092-8
    › Primary publication · 838697 (PubMed)
  77. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Weil PA, Luse DS, Segall J, Roeder RG (1979) Cell 18(2): 469-84
    › Primary publication · 498279 (PubMed)
  78. Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. Weil PA, Segall J, Harris B, Ng SY, Roeder RG (1979) J Biol Chem 254(13): 6163-73
    › Primary publication · 447704 (PubMed)