Nick Reiter
Last active: 1/21/2015


Our research involves understanding the mechanisms and architecture of ribonucleoproteins (RNPs) that encompass chromatin biology and RNA regulation. Investigating these RNP complexes will help us to better understand how large, ncRNAs regulate gene expression. We incorporate X-ray crystallography, NMR spectroscopy, molecular biology, and chemical biology tools to examine the details of protein-RNA interactions and RNP complexes involved in eukaryotic gene regulation. Studying these RNP molecular machines will serve to enhance our knowledge of human disease, cancer, and cell proliferation.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Structural and functional insights into the N-terminus of Schizosaccharomyces pombe Cdc5. Collier SE, Voehler M, Peng D, Ohi R, Gould KL, Reiter NJ, Ohi MD (2014) Biochemistry 53(41): 6439-51
    › Primary publication · 25263959 (PubMed) · PMC4204884 (PubMed Central)
  2. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Reiter NJ, Osterman AK, Mondragón A (2012) Nucleic Acids Res 40(20): 10384-93
    › Citation · 22904083 (PubMed) · PMC3488217 (PubMed Central)
  3. Emerging structural themes in large RNA molecules. Reiter NJ, Chan CW, Mondragón A (2011) Curr Opin Struct Biol 21(3): 319-26
    › Citation · 21474301 (PubMed) · PMC3112254 (PubMed Central)
  4. Effect of buffer general acid-base catalysis on the stereoselectivity of ester and thioester H/D exchange in D2O. Mohrig JR, Reiter NJ, Kirk R, Zawadski MR, Lamarre-Vincent N (2011) J Am Chem Soc 133(13): 5124-8
    › Citation · 21384891 (PubMed)
  5. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragón A (2010) Nature 468(7325): 784-9
    › Citation · 21076397 (PubMed) · PMC3058908 (PubMed Central)
  6. Structure and functional implications of a complex containing a segment of U6 RNA bound by a domain of Prp24. Martin-Tumasz S, Reiter NJ, Brow DA, Butcher SE (2010) RNA 16(4): 792-804
    › Citation · 20181740 (PubMed) · PMC2844626 (PubMed Central)
  7. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB's C terminus. Shereda RD, Reiter NJ, Butcher SE, Keck JL (2009) J Mol Biol 386(3): 612-25
    › Citation · 19150358 (PubMed) · PMC2735845 (PubMed Central)
  8. DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer. Reiter NJ, Maher LJ, Butcher SE (2008) Nucleic Acids Res 36(4): 1227-36
    › Citation · 18160411 (PubMed) · PMC2275087 (PubMed Central)
  9. Structure and interactions of the first three RNA recognition motifs of splicing factor prp24. Bae E, Reiter NJ, Bingman CA, Kwan SS, Lee D, Phillips GN, Butcher SE, Brow DA (2007) J Mol Biol 367(5): 1447-58
    › Citation · 17320109 (PubMed) · PMC1939982 (PubMed Central)
  10. Resonance assignments for the two N-terminal RNA recognition motifs (RRM) of the S. cerevisiae pre-mRNA processing protein Prp24. Reiter NJ, Lee D, Wang YX, Tonelli M, Bahrami A, Cornilescu CC, Butcher SE (2006) J Biomol NMR : 58
    › Citation · 17131032 (PubMed)
  11. Dynamics and metal ion binding in the U6 RNA intramolecular stem-loop as analyzed by NMR. Blad H, Reiter NJ, Abildgaard F, Markley JL, Butcher SE (2005) J Mol Biol 353(3): 540-55
    › Citation · 16181635 (PubMed)
  12. Dynamics in the U6 RNA intramolecular stem-loop: a base flipping conformational change. Reiter NJ, Blad H, Abildgaard F, Butcher SE (2004) Biochemistry 43(43): 13739-47
    › Citation · 15504036 (PubMed)
  13. Structure of the U6 RNA intramolecular stem-loop harboring an S(P)-phosphorothioate modification. Reiter NJ, Nikstad LJ, Allmann AM, Johnson RJ, Butcher SE (2003) RNA 9(5): 533-42
    › Citation · 12702812 (PubMed) · PMC1370419 (PubMed Central)
  14. Mn2+ is a native metal ion activator for bacteriophage lambda protein phosphatase. Reiter TA, Reiter NJ, Rusnak F (2002) Biochemistry 41(51): 15404-9
    › Citation · 12484780 (PubMed)
  15. Inhibition of bacteriophage lambda protein phosphatase by organic and oxoanion inhibitors. Reiter NJ, White DJ, Rusnak F (2002) Biochemistry 41(3): 1051-9
    › Citation · 11790129 (PubMed)
  16. Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase: effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities. White DJ, Reiter NJ, Sikkink RA, Yu L, Rusnak F (2001) Biochemistry 40(30): 8918-29
    › Citation · 11467953 (PubMed)
  17. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Voegtli WC, White DJ, Reiter NJ, Rusnak F, Rosenzweig AC (2000) Biochemistry 39(50): 15365-74
    › Citation · 11112522 (PubMed)