Profile

Roy Zent is the Thomas F. Frist Sr Professor of Medicine at the Vanderbilt University School of Medicine in Nashville, Tennessee. He is a member of the division of nephrology and is the Vice Chair of Research for the department of Medicine and is a Professor in the departments of Cell and Developmental Biology as well as Cancer Biology. He received his medical training at The University of Witwatersrand in Johannesburg in South Africa and specialized in internal medicine and nephrology at the University of Cape Town. Dr. Zent received a Ph.D in cell biology from the University of Toronto in Canada and did a post-doctoral fellowship with Dr. Mark Ginsberg at The Scripps Research Institute in La Jolla, CA. He is board certified in South Africa, Canada and the USA in internal medicine and nephrology. Dr. Zent has a clinical nephrology and internal medicine practice.

The main research focus of the Zent group is to define mechanisms of cell-extracellular matrix interactions and how they affect kidney development and function. The family of proteins focused on is called integrins, which are the principal cell receptors for extracellular matrix. The major projects in the group include: 1) defining the mechanisms whereby integrins regulate cell function and signaling; 2) defining how integrin cytoplasmic tails interact with cytoplasmic proteins to regulate cell function; 2) defining the structural determinants of specificity of integrin-dependent signaling. The major techniques used to answer these questions include the making and characterization of transgenic mice, cell biology and biochemical techniques as well as structural methodologies including 3-dimensional nuclear magnetic resonance. Our group has extensive collaborations with other groups within the division of nephrology and other departments at Vanderbilt Medical Center.     

Publications

The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R (2016) Elife : e10130
    › Primary publication · 26821125 (PubMed) · PMC4749545 (PubMed Central)
  2. Deleting the TGF-β receptor in proximal tubules impairs HGF signaling. Nlandu Khodo S, Neelisetty S, Woodbury L, Green E, Harris RC, Zent R, Gewin L (2016) Am J Physiol Renal Physiol 310(6): F499-510
    › Primary publication · 26739889 (PubMed) · PMC4796273 (PubMed Central)
  3. Vinculin controls talin engagement with the actomyosin machinery. Atherton P, Stutchbury B, Wang DY, Jethwa D, Tsang R, Meiler-Rodriguez E, Wang P, Bate N, Zent R, Barsukov IL, Goult BT, Critchley DR, Ballestrem C (2015) Nat Commun : 10038
    › Primary publication · 26634421 (PubMed) · PMC4686655 (PubMed Central)
  4. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View. Borza CM, Chen X, Zent R, Pozzi A (2015) Curr Top Membr : 231-53
    › Primary publication · 26610916 (PubMed) · PMC4913201 (PubMed Central)
  5. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, Klingner C, Sabass B, Zent R, Rief M, Grashoff C (2015) Nat Cell Biol 17(12): 1597-606
    › Primary publication · 26523364 (PubMed) · PMC4662888 (PubMed Central)
  6. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development. Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ, Zent R (2015) J Cell Sci 128(23): 4293-305
    › Primary publication · 26490995 (PubMed) · PMC4712811 (PubMed Central)
  7. A Murine Model of K-RAS and β-Catenin Induced Renal Tumors Expresses High Levels of E2F1 and Resembles Human Wilms Tumor. Yi Y, Polosukhina D, Love HD, Hembd A, Pickup M, Moses HL, Lovvorn HN, Zent R, Clark PE (2015) J Urol 194(6): 1762-70
    › Primary publication · 25934441 (PubMed) · PMC4782590 (PubMed Central)
  8. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Yazlovitskaya EM, Tseng HY, Viquez O, Tu T, Mernaugh G, McKee KK, Riggins K, Quaranta V, Pathak A, Carter BD, Yurchenco P, Sonnenberg A, Böttcher RT, Pozzi A, Zent R (2015) Mol Biol Cell 26(10): 1857-74
    › Primary publication · 25808491 (PubMed) · PMC4436831 (PubMed Central)
  9. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells. Neelisetty S, Alford C, Reynolds K, Woodbury L, Nlandu-Khodo S, Yang H, Fogo AB, Hao CM, Harris RC, Zent R, Gewin L (2015) Kidney Int 88(3): 503-14
    › Primary publication · 25760325 (PubMed) · PMC4556568 (PubMed Central)
  10. Yersinia enterocolitica exploits different pathways to accomplish adhesion and toxin injection into host cells. Keller B, Mühlenkamp M, Deuschle E, Siegfried A, Mössner S, Schade J, Griesinger T, Katava N, Braunsdorf C, Fehrenbacher B, Jiménez-Soto LF, Schaller M, Haas R, Genth H, Retta SF, Meyer H, Böttcher RT, Zent R, Schütz M, Autenrieth IB, Bohn E (2015) Cell Microbiol 17(8): 1179-204
    › Primary publication · 25678064 (PubMed)
  11. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. Karaköse E, Geiger T, Flynn K, Lorenz-Baath K, Zent R, Mann M, Fässler R (2015) J Cell Sci 128(5): 1023-33
    › Primary publication · 25609703 (PubMed) · PMC4342583 (PubMed Central)
  12. p47(phox) contributes to albuminuria and kidney fibrosis in mice. Wang H, Chen X, Su Y, Paueksakon P, Hu W, Zhang MZ, Harris RC, Blackwell TS, Zent R, Pozzi A (2015) Kidney Int 87(5): 948-62
    › Primary publication · 25565313 (PubMed) · PMC4425591 (PubMed Central)
  13. Arrestins regulate cell spreading and motility via focal adhesion dynamics. Cleghorn WM, Branch KM, Kook S, Arnette C, Bulus N, Zent R, Kaverina I, Gurevich EV, Weaver AM, Gurevich VV (2015) Mol Biol Cell 26(4): 622-35
    › Primary publication · 25540425 (PubMed) · PMC4325834 (PubMed Central)
  14. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R (2014) Development 141(24): 4751-62
    › Primary publication · 25395457 (PubMed) · PMC4299273 (PubMed Central)
  15. Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. Gangadhariah MH, Luther JM, Garcia V, Paueksakon P, Zhang MZ, Hayward SW, Love HD, Falck JR, Manthati VL, Imig JD, Schwartzman ML, Zent R, Capdevila JH, Pozzi A (2015) J Am Soc Nephrol 26(3): 597-610
    › Primary publication · 25071086 (PubMed) · PMC4341468 (PubMed Central)
  16. Integrin-mediated type II TGF-β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. Chen X, Wang H, Liao HJ, Hu W, Gewin L, Mernaugh G, Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, Fässler R, Zent R, Pozzi A (2014) J Clin Invest 124(8): 3295-310
    › Primary publication · 24983314 (PubMed) · PMC4109532 (PubMed Central)
  17. Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Miller CG, Pozzi A, Zent R, Schwarzbauer JE (2014) Mol Biol Cell 25(16): 2342-50
    › Primary publication · 24943838 (PubMed) · PMC4142608 (PubMed Central)
  18. The kidney research predicament. Bryan L, Ibrahim T, Zent R, Fischer MJ (2014) J Am Soc Nephrol 25(5): 898-903
    › Primary publication · 24652790 (PubMed) · PMC4005318 (PubMed Central)
  19. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S (2014) J Clin Invest 124(3): 1098-113
    › Primary publication · 24531545 (PubMed) · PMC3934159 (PubMed Central)
  20. The integrin β1 subunit regulates paracellular permeability of kidney proximal tubule cells. Elias BC, Mathew S, Srichai MB, Palamuttam R, Bulus N, Mernaugh G, Singh AB, Sanders CR, Harris RC, Pozzi A, Zent R (2014) J Biol Chem 289(12): 8532-44
    › Primary publication · 24509849 (PubMed) · PMC3961677 (PubMed Central)
  21. Cdc42 promotes host defenses against fatal infection. Lee K, Boyd KL, Parekh DV, Kehl-Fie TE, Baldwin HS, Brakebusch C, Skaar EP, Boothby M, Zent R (2013) Infect Immun 81(8): 2714-23
    › Primary publication · 23690402 (PubMed) · PMC3719566 (PubMed Central)
  22. Mutations in the paxillin-binding site of integrin-linked kinase (ILK) destabilize the pseudokinase domain and cause embryonic lethality in mice. Moik D, Böttcher A, Makhina T, Grashoff C, Bulus N, Zent R, Fässler R (2013) J Biol Chem 288(26): 18863-71
    › Primary publication · 23658024 (PubMed) · PMC3696662 (PubMed Central)
  23. β1 integrin NPXY motifs regulate kidney collecting-duct development and maintenance by induced-fit interactions with cytosolic proteins. Mathew S, Lu Z, Palamuttam RJ, Mernaugh G, Hadziselimovic A, Chen J, Bulus N, Gewin LS, Voehler M, Meves A, Ballestrem C, Fässler R, Pozzi A, Sanders CR, Zent R (2012) Mol Cell Biol 32(20): 4080-91
    › Primary publication · 22869523 (PubMed) · PMC3457338 (PubMed Central)
  24. Integrin adhesion and force coupling are independently regulated by localized PtdIns(4,5)2 synthesis. Legate KR, Takahashi S, Bonakdar N, Fabry B, Boettiger D, Zent R, Fässler R (2011) EMBO J 30(22): 4539-53
    › Primary publication · 21926969 (PubMed) · PMC3243596 (PubMed Central)
  25. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Yang DH, McKee KK, Chen ZL, Mernaugh G, Strickland S, Zent R, Yurchenco PD (2011) Development 138(20): 4535-44
    › Primary publication · 21903675 (PubMed) · PMC3177319 (PubMed Central)
  26. Goodpasture antigen-binding protein (GPBP) directs myofibril formation: identification of intracellular downstream effector 130-kDa GPBP-interacting protein (GIP130). Revert-Ros F, López-Pascual E, Granero-Moltó F, Macías J, Breyer R, Zent R, Hudson BG, Saadeddin A, Revert F, Blasco R, Navarro C, Burks D, Saus J (2011) J Biol Chem 286(40): 35030-43
    › Primary publication · 21832087 (PubMed) · PMC3186396 (PubMed Central)
  27. Membrane-type 4 matrix metalloproteinase (MT4-MMP) modulates water homeostasis in mice. Srichai MB, Colleta H, Gewin L, Matrisian L, Abel TW, Koshikawa N, Seiki M, Pozzi A, Harris RC, Zent R (2011) PLoS One 6(2): e17099
    › Primary publication · 21347258 (PubMed) · PMC3037967 (PubMed Central)
  28. Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development. Smeeton J, Zhang X, Bulus N, Mernaugh G, Lange A, Karner CM, Carroll TJ, Fässler R, Pozzi A, Rosenblum ND, Zent R (2010) Development 137(19): 3233-43
    › Primary publication · 20823064 (PubMed) · PMC2934735 (PubMed Central)
  29. Integrin-linked kinase is an adaptor with essential functions during mouse development. Lange A, Wickström SA, Jakobson M, Zent R, Sainio K, Fässler R (2009) Nature 461(7266): 1002-6
    › Primary publication · 19829382 (PubMed)
  30. beta1 integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Zhang X, Mernaugh G, Yang DH, Gewin L, Srichai MB, Harris RC, Iturregui JM, Nelson RD, Kohan DE, Abrahamson D, Fässler R, Yurchenco P, Pozzi A, Zent R (2009) Development 136(19): 3357-66
    › Primary publication · 19710172 (PubMed) · PMC2739149 (PubMed Central)
  31. Integrins, extracellular matrix, and terminal differentiation of renal epithelial cells. Pozzi A, Zent R (2008) J Am Soc Nephrol 19(6): 1043-4
    › Primary publication · 18480310 (PubMed)