Primary Appointment:

Ophthalmology and Visual Sciences

Secondary Appointments:

Medical Education & Administration

Cell & Developmental Biology

Molecular Physiology and Biophysics

Pharmacology Training Program

Neuroscience Training Porgram


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. The peroxisome proliferator-activated receptor-β/δ antagonist GSK0660 mitigates retinal cell inflammation and leukostasis. Capozzi ME, Savage SR, McCollum GW, Hammer SS, Ramos CJ, Yang R, Bretz CA, Penn JS (2020) Exp Eye Res : 107885
    › Primary publication · 31758977 (PubMed) · PMC7426872 (PubMed Central)
  2. Human Umbilical Tissue-Derived Cells Secrete Soluble VEGFR1 and Inhibit Choroidal Neovascularization. Cao J, Yang R, Smith TE, Evans S, McCollum GW, Pomerantz SC, Petley T, Harris IR, Penn JS (2019) Mol Ther Methods Clin Dev : 37-46
    › Primary publication · 31276010 (PubMed) · PMC6586593 (PubMed Central)
  3. Photothermal Optical Coherence Tomography of Anti-Angiogenic Treatment in the Mouse Retina Using Gold Nanorods as Contrast Agents. Gordon AY, Lapierre-Landry M, Skala MC, Penn JS (2019) Transl Vis Sci Technol 8(3): 18
    › Primary publication · 31131155 (PubMed) · PMC6519216 (PubMed Central)
  4. Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles. Uddin MI, Kilburn TC, Yang R, McCollum GW, Wright DW, Penn JS (2018) Mol Pharm 15(12): 5514-5520
    › Primary publication · 30350640 (PubMed) · PMC7135968 (PubMed Central)
  5. Palmitic Acid Induces Müller Cell Inflammation that is Potentiated by Co-treatment with Glucose. Capozzi ME, Giblin MJ, Penn JS (2018) Sci Rep 8(1): 5459
    › Primary publication · 29626212 (PubMed) · PMC5889388 (PubMed Central)
  6. Real-time imaging of VCAM-1 mRNA in TNF-α activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. Uddin MI, Jayagopal A, Wong A, McCollum GW, Wright DW, Penn JS (2018) Nanomedicine 14(1): 63-71
    › Primary publication · 28890107 (PubMed) · PMC5742066 (PubMed Central)
  7. In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Lapierre-Landry M, Gordon AY, Penn JS, Skala MC (2017) Sci Rep 7(1): 9228
    › Primary publication · 28835698 (PubMed) · PMC5569082 (PubMed Central)
  8. In Vivo Imaging of Retinal Hypoxia Using HYPOX-4-Dependent Fluorescence in a Mouse Model of Laser-Induced Retinal Vein Occlusion (RVO). Uddin MI, Jayagopal A, McCollum GW, Yang R, Penn JS (2017) Invest Ophthalmol Vis Sci 58(9): 3818-3824
    › Primary publication · 28750413 (PubMed) · PMC5531786 (PubMed Central)
  9. Linoleic Acid is a Diabetes-relevant Stimulator of Retinal Inflammation in Human Retinal Muller Cells and Microvascular Endothelial Cells. Capozzi ME, McCollum GW, Cousins DB, Penn JS (2016) J Diabetes Metab 7(12)
    › Primary publication · 28066685 (PubMed) · PMC5215739 (PubMed Central)
  10. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation. Capozzi ME, Hammer SS, McCollum GW, Penn JS (2016) Sci Rep : 39211
    › Primary publication · 27966642 (PubMed) · PMC5155241 (PubMed Central)
  11. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy. Uddin MI, Evans SM, Craft JR, Capozzi ME, McCollum GW, Yang R, Marnett LJ, Uddin MJ, Jayagopal A, Penn JS (2016) Sci Rep : 31011
    › Primary publication · 27491345 (PubMed) · PMC4974503 (PubMed Central)
  12. NFAT isoforms play distinct roles in TNFα-induced retinal leukostasis. Bretz CA, Savage SR, Capozzi ME, Suarez S, Penn JS (2015) Sci Rep : 14963
    › Primary publication · 26527057 (PubMed) · PMC4630625 (PubMed Central)
  13. High Glucose-induced Retinal Pericyte Apoptosis Depends on Association of GAPDH and Siah1. Suarez S, McCollum GW, Jayagopal A, Penn JS (2015) J Biol Chem 290(47): 28311-28320
    › Primary publication · 26438826 (PubMed) · PMC4653686 (PubMed Central)
  14. RNA-seq identifies a role for the PPARβ/δ inverse agonist GSK0660 in the regulation of TNFα-induced cytokine signaling in retinal endothelial cells. Savage SR, McCollum GW, Yang R, Penn JS (2015) Mol Vis : 568-76
    › Primary publication · 26015769 (PubMed) · PMC4443583 (PubMed Central)
  15. RNA-Seq reveals a role for NFAT-signaling in human retinal microvascular endothelial cells treated with TNFα. Savage SR, Bretz CA, Penn JS (2015) PLoS One 10(1): e0116941
    › Primary publication · 25617622 (PubMed) · PMC4305319 (PubMed Central)
  16. Modulation of VEGF-induced retinal vascular permeability by peroxisome proliferator-activated receptor-β/δ. Suarez S, McCollum GW, Bretz CA, Yang R, Capozzi ME, Penn JS (2014) Invest Ophthalmol Vis Sci 55(12): 8232-40
    › Primary publication · 25406289 (PubMed) · PMC4271638 (PubMed Central)
  17. Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization. Barnett JM, Suarez S, McCollum GW, Penn JS (2014) Invest Ophthalmol Vis Sci 55(10): 6490-8
    › Primary publication · 25159209 (PubMed) · PMC4197712 (PubMed Central)
  18. The role of cytochrome P450 epoxygenases in retinal angiogenesis. Capozzi ME, McCollum GW, Penn JS (2014) Invest Ophthalmol Vis Sci 55(7): 4253-60
    › Primary publication · 24917142 (PubMed) · PMC4098062 (PubMed Central)
  19. Mitigation of oxygen-induced retinopathy in α2β1 integrin-deficient mice. Madamanchi A, Capozzi M, Geng L, Li Z, Friedman RD, Dickeson SK, Penn JS, Zutter MM (2014) Invest Ophthalmol Vis Sci 55(7): 4338-47
    › Primary publication · 24917135 (PubMed) · PMC4102391 (PubMed Central)
  20. Hypoxia-induced expression of VEGF splice variants and protein in four retinal cell types. Watkins WM, McCollum GW, Savage SR, Capozzi ME, Penn JS, Morrison DG (2013) Exp Eye Res : 240-6
    › Primary publication · 24076411 (PubMed) · PMC4256053 (PubMed Central)
  21. The role of the NFAT signaling pathway in retinal neovascularization. Bretz CA, Savage S, Capozzi M, Penn JS (2013) Invest Ophthalmol Vis Sci 54(10): 7020-7
    › Primary publication · 24052639 (PubMed) · PMC3809948 (PubMed Central)
  22. Retinal angiogenesis suppression through small molecule activation of p53. Chavala SH, Kim Y, Tudisco L, Cicatiello V, Milde T, Kerur N, Claros N, Yanni S, Guaiquil VH, Hauswirth WW, Penn JS, Rafii S, De Falco S, Lee TC, Ambati J (2013) J Clin Invest 123(10): 4170-81
    › Primary publication · 24018558 (PubMed) · PMC3784529 (PubMed Central)
  23. Imaging of endothelial progenitor cell subpopulations in angiogenesis using quantum dot nanocrystals. Barnett JM, Penn JS, Jayagopal A (2013) Methods Mol Biol : 45-56
    › Primary publication · 23749568 (PubMed)
  24. Mechanisms and management of retinopathy of prematurity. Hartnett ME, Penn JS (2013) N Engl J Med 368(12): 1162-3
    › Primary publication · 23514302 (PubMed)
  25. Inhibition of retinal neovascularization by soluble EphA2 receptor. Chen J, Hicks D, Brantley-Sieders D, Cheng N, McCollum GW, Qi-Werdich X, Penn J (2006) Exp Eye Res 82(4): 664-73
    › Primary publication · 16359662 (PubMed)
  26. The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Penn JS, Henry MM, Wall PT, Tolman BL (1995) Invest Ophthalmol Vis Sci 36(10): 2063-70
    › Primary publication · 7657545 (PubMed)
  27. Intracellular topography of rhodopsin regeneration in vertebrate rods. Williams TP, Penn JS (1985) J Gen Physiol 86(3): 413-22
    › Primary publication · 4056732 (PubMed) · PMC2228799 (PubMed Central)