Profile

Oxygen Metabolism Group

Principal Investigator: Professor Dr. med. Volker H. Haase

       Chronic kidney disease (CKD) represents a major health burden worldwide, is associated with high cardiovascular morbidity and mortality, and frequently leads to the development of end-stage renal disease (ESRD). In the United States, the prevalence of CKD in the general population is estimated to range from 10 to 15% (all CKD stages; Renal Data System, 2005-2010). Therefore, novel approaches for the diagnosis (biomarkers), the prevention and treatment of CKD are needed to reduce the risk of cardiovascular events, ESRD and death in patients with CKD.

      Hypoxia has been identified as a final and common pathway in the pathogenesis of CKD irrespective of etiology, as demonstrated by the Professor Haase’s group and other laboratories. Professor Haase’s laboratory has a long-standing interest in mammalian oxygen sensing, specifically in the biology of the hypoxia-inducible factor (HIF)/prolyl-4-hydroxylase domain (PHD) pathway and non-HIF-related dioxygenases. PHD enzymes are oxygen sensors that target the α-subunit of HIF for hydroxylation and subsequent proteasomal degradation via the von Hippel-Lindau (VHL) E3 ubiquitin ligase and belong to a family of oxygen- and 2-oxoglutarate (2-OG)-dependent dioxygenases. These enzymes represent excellent drug targets and several compounds are currently in clinical trials for the treatment of renal anemia (Koury and Haase, Nat Rev Nephrol, 2015). Using mouse genetics Prof. Haase’s group identified HIF-1 as the first molecular link between hypoxia and CKD progression (Higgins, JCI, 2007).

      Central hypothesis of Professor Haase’s research program is that hypoxia, the HIF/PHD pathway and other oxygen- and 2OG-dependent dioxygenases play critical roles in the pathogenesis of renal injury and CKD progression through the regulation of metabolic pathways and mitochondrial metabolism. Shifts in cellular metabolism provide specific signals that modulate cellular differentiation and function, cell-cell interactions and inflammation, and thus can lead to maladaptive tissue repair impacting the development and progression of fibrotic diseases, such as CKD. Specifically, Prof. Haase’s group was able to show that changes in epithelial mitochondrial function modulate the function of pericytes and renal microvasculature through changes in renal tissue pO2 (Farsijani, JCI, 2016). Prof. Haase’s group has furthermore shown that the activation of hypoxia responses in renal endothelium modulates inflammatory responses in the context of acute and chronic renal injury (Kapitsinou et al., JCI, 2104).

      The long-term goals of Professor Haase’s research program are to characterize the molecular links between oxygen sensing, renal metabolism and chronic kidney injury. Data generated from this research program are likely to provide general insights into the role of metabolism in the regulation of tissue injury and repair and will therefore be of relevance to multiple organ systems.

Publications

The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH (2017) Kidney Int 92(6): 1370-1383
    › Primary publication · 28847650 (PubMed)
  2. Oxygen sensors as therapeutic targets in kidney disease. Haase VH (2017) Nephrol Ther : S29-S34
    › Primary publication · 28577740 (PubMed)
  3. Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Haase VH (2017) Exp Cell Res
    › Primary publication · 28483447 (PubMed)
  4. Inflamed fat and mitochondrial dysfunction in end-stage renal disease links to hypoxia-could curcumin be of benefit? Stenvinkel P, Haase VH (2017) Nephrol Dial Transplant 32(6): 909-912
    › Primary publication · 28460128 (PubMed)
  5. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Haase VH (2017) Hemodial Int : S110-S124
    › Primary publication · 28449418 (PubMed)
  6. Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. Urrutia AA, Afzal A, Nelson J, Davidoff O, Gross KW, Haase VH (2016) Blood 128(21): 2550-2560
    › Primary publication · 27683416 (PubMed) · PMC5123193 (PubMed Central)
  7. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH (2016) Kidney Int 90(5): 1115-1122
    › Primary publication · 27650732 (PubMed)
  8. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC, Volanakis E, Thomas JW, Hiebert S, Haase VH, Boothby MR (2016) Nature 537(7619): 234-238
    › Primary publication · 27501247 (PubMed) · PMC5161594 (PubMed Central)
  9. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH (2016) J Clin Invest 126(5): 1926-38
    › Primary publication · 27088801 (PubMed) · PMC4855934 (PubMed Central)
  10. The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice. Kapitsinou PP, Rajendran G, Astleford L, Michael M, Schonfeld MP, Fields T, Shay S, French JL, West J, Haase VH (2016) Mol Cell Biol 36(10): 1584-94
    › Primary publication · 26976644 (PubMed) · PMC4859687 (PubMed Central)
  11. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. Farsijani NM, Liu Q, Kobayashi H, Davidoff O, Sha F, Fandrey J, Ikizler TA, O'Connor PM, Haase VH (2016) J Clin Invest 126(4): 1425-37
    › Primary publication · 26927670 (PubMed) · PMC4811147 (PubMed Central)
  12. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. Bryant AJ, Carrick RP, McConaha ME, Jones BR, Shay SD, Moore CS, Blackwell TR, Gladson S, Penner NL, Burman A, Tanjore H, Hemnes AR, Karwandyar AK, Polosukhin VV, Talati MA, Dong HJ, Gleaves LA, Carrier EJ, Gaskill C, Scott EW, Majka SM, Fessel JP, Haase VH, West JD, Blackwell TS, Lawson WE (2016) Am J Physiol Lung Cell Mol Physiol 310(3): L249-62
    › Primary publication · 26637636 (PubMed) · PMC4838140 (PubMed Central)
  13. Molecular mechanisms of ischemic preconditioning in the kidney. Kapitsinou PP, Haase VH (2015) Am J Physiol Renal Physiol 309(10): F821-34
    › Primary publication · 26311114 (PubMed) · PMC4652073 (PubMed Central)
  14. Inflammation and hypoxia in the kidney: friends or foes? Haase VH (2015) Kidney Int 88(2): 213-5
    › Primary publication · 26230196 (PubMed) · PMC4534718 (PubMed Central)
  15. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Koury MJ, Haase VH (2015) Nat Rev Nephrol 11(7): 394-410
    › Primary publication · 26055355 (PubMed) · PMC4497972 (PubMed Central)
  16. Muc1 is protective during kidney ischemia-reperfusion injury. Pastor-Soler NM, Sutton TA, Mang HE, Kinlough CL, Gendler SJ, Madsen CS, Bastacky SI, Ho J, Al-Bataineh MM, Hallows KR, Singh S, Monga SP, Kobayashi H, Haase VH, Hughey RP (2015) Am J Physiol Renal Physiol 308(12): F1452-62
    › Primary publication · 25925251 (PubMed) · PMC4469889 (PubMed Central)
  17. A breath of fresh air for diabetic nephropathy. Haase VH (2015) J Am Soc Nephrol 26(2): 239-41
    › Primary publication · 25183808 (PubMed) · PMC4310668 (PubMed Central)
  18. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH (2014) J Clin Invest 124(6): 2396-409
    › Primary publication · 24789906 (PubMed) · PMC4092875 (PubMed Central)
  19. Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. Lin Q, Huang Y, Booth CJ, Haase VH, Johnson RS, Celeste Simon M, Giordano FJ, Yun Z (2013) J Am Heart Assoc 2(6): e000548
    › Primary publication · 24326162 (PubMed) · PMC3886757 (PubMed Central)
  20. CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. Tak E, Ridyard D, Kim JH, Zimmerman M, Werner T, Wang XX, Shabeka U, Seo SW, Christians U, Klawitter J, Moldovan R, Garcia G, Levi M, Haase V, Ravid K, Eltzschig HK, Grenz A (2014) J Am Soc Nephrol 25(3): 547-63
    › Primary publication · 24262796 (PubMed) · PMC3935577 (PubMed Central)
  21. Mechanisms of hypoxia responses in renal tissue. Haase VH (2013) J Am Soc Nephrol 24(4): 537-41
    › Primary publication · 23334390 (PubMed)
  22. Regulation of erythropoiesis by hypoxia-inducible factors. Haase VH (2013) Blood Rev 27(1): 41-53
    › Primary publication · 23291219 (PubMed) · PMC3731139 (PubMed Central)
  23. Hypoxia-inducible factor signaling in the development of kidney fibrosis. Haase VH (2012) Fibrogenesis Tissue Repair 5(Suppl 1): S16
    › Primary publication · 23259746 (PubMed) · PMC3368791 (PubMed Central)
  24. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. Liu Q, Davidoff O, Niss K, Haase VH (2012) J Clin Invest 122(12): 4635-44
    › Primary publication · 23114598 (PubMed) · PMC3533545 (PubMed Central)
  25. Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Park SW, Kim M, Kim JY, Brown KM, Haase VH, D'Agati VD, Lee HT (2012) Kidney Int 82(8): 878-91
    › Primary publication · 22695326 (PubMed) · PMC3443517 (PubMed Central)
  26. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. Kobayashi H, Gilbert V, Liu Q, Kapitsinou PP, Unger TL, Rha J, Rivella S, Schlöndorff D, Haase VH (2012) J Immunol 188(10): 5106-15
    › Primary publication · 22490864 (PubMed) · PMC3345098 (PubMed Central)
  27. Renal cancer: oxygen meets metabolism. Haase VH (2012) Exp Cell Res 318(9): 1057-67
    › Primary publication · 22406000 (PubMed) · PMC3334413 (PubMed Central)
  28. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Kapitsinou PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, Haase VH (2012) Am J Physiol Renal Physiol 302(9): F1172-9
    › Primary publication · 22262480 (PubMed) · PMC3362175 (PubMed Central)
  29. AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Gurley SB, Riquier-Brison AD, Schnermann J, Sparks MA, Allen AM, Haase VH, Snouwaert JN, Le TH, McDonough AA, Koller BH, Coffman TM (2011) Cell Metab 13(4): 469-75
    › Primary publication · 21459331 (PubMed) · PMC3070917 (PubMed Central)
  30. Angiotensin II: breathtaking in the renal medulla. Haase VH (2011) Kidney Int 79(3): 269-71
    › Primary publication · 21228800 (PubMed) · PMC3621768 (PubMed Central)
  31. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, Susztak K (2010) J Clin Invest 120(11): 4040-54
    › Primary publication · 20978353 (PubMed) · PMC2964979 (PubMed Central)
  32. HO-1 in control of a self-eating kidney. Kapitsinou PP, Haase VH (2010) J Am Soc Nephrol 21(10): 1600-2
    › Primary publication · 20829407 (PubMed) · PMC4530623 (PubMed Central)
  33. Renal oxygenation suppresses VHL loss-induced senescence that is caused by increased sensitivity to oxidative stress. Welford SM, Dorie MJ, Li X, Haase VH, Giaccia AJ (2010) Mol Cell Biol 30(19): 4595-603
    › Primary publication · 20679489 (PubMed) · PMC2950534 (PubMed Central)
  34. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, Epstein JA, Moores SL, Erickson-Miller CL, Haase VH (2010) Blood 116(16): 3039-48
    › Primary publication · 20628150 (PubMed) · PMC2974609 (PubMed Central)
  35. Sirtuins and their relevance to the kidney. Hao CM, Haase VH (2010) J Am Soc Nephrol 21(10): 1620-7
    › Primary publication · 20595677 (PubMed) · PMC4527176 (PubMed Central)
  36. The sweet side of HIF. Haase VH (2010) Kidney Int 78(1): 10-3
    › Primary publication · 20551925 (PubMed) · PMC3789845 (PubMed Central)
  37. Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Weidemann A, Krohne TU, Aguilar E, Kurihara T, Takeda N, Dorrell MI, Simon MC, Haase VH, Friedlander M, Johnson RS (2010) Glia 58(10): 1177-85
    › Primary publication · 20544853 (PubMed) · PMC2993327 (PubMed Central)
  38. Hypoxic regulation of erythropoiesis and iron metabolism. Haase VH (2010) Am J Physiol Renal Physiol 299(1): F1-13
    › Primary publication · 20444740 (PubMed) · PMC2904169 (PubMed Central)
  39. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis. Seagroves TN, Peacock DL, Liao D, Schwab LP, Krueger R, Handorf CR, Haase VH, Johnson RS (2010) Am J Pathol 176(5): 2269-82
    › Primary publication · 20382704 (PubMed) · PMC2861092 (PubMed Central)
  40. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z (2010) J Am Soc Nephrol 21(5): 756-61
    › Primary publication · 20360310 (PubMed) · PMC2865746 (PubMed Central)
  41. Activation of sphingosine-1-phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury. Bajwa A, Jo SK, Ye H, Huang L, Dondeti KR, Rosin DL, Haase VH, Macdonald TL, Lynch KR, Okusa MD (2010) J Am Soc Nephrol 21(6): 955-65
    › Primary publication · 20338995 (PubMed) · PMC2900956 (PubMed Central)
  42. Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Lee JJ, Natsuizaka M, Ohashi S, Wong GS, Takaoka M, Michaylira CZ, Budo D, Tobias JW, Kanai M, Shirakawa Y, Naomoto Y, Klein-Szanto AJ, Haase VH, Nakagawa H (2010) Carcinogenesis 31(3): 427-34
    › Primary publication · 20042640 (PubMed) · PMC2832548 (PubMed Central)
  43. Pathophysiological Consequences of HIF Activation: HIF as a modulator of fibrosis. Haase VH (2009) Ann N Y Acad Sci : 57-65
    › Primary publication · 19845607 (PubMed) · PMC4529330 (PubMed Central)
  44. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. Weidemann A, Kerdiles YM, Knaup KX, Rafie CA, Boutin AT, Stockmann C, Takeda N, Scadeng M, Shih AY, Haase VH, Simon MC, Kleinfeld D, Johnson RS (2009) J Clin Invest 119(11): 3373-83
    › Primary publication · 19809162 (PubMed) · PMC2769183 (PubMed Central)
  45. The VHL tumor suppressor: master regulator of HIF. Haase VH (2009) Curr Pharm Des 15(33): 3895-903
    › Primary publication · 19671042 (PubMed) · PMC3622710 (PubMed Central)
  46. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Haase VH (2009) Kidney Int 76(5): 492-9
    › Primary publication · 19536078 (PubMed) · PMC3623274 (PubMed Central)
  47. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH (2009) Mol Cell Biol 29(16): 4527-38
    › Primary publication · 19528226 (PubMed) · PMC2725738 (PubMed Central)
  48. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, Haase VH, Saito Y (2008) Am J Physiol Renal Physiol 295(4): F1023-9
    › Primary publication · 18667485 (PubMed) · PMC4250235 (PubMed Central)
  49. Hemoglobin in the kidney: breaking with traditional dogma. Haase VH (2008) J Am Soc Nephrol 19(8): 1440-1
    › Primary publication · 18614770 (PubMed)
  50. Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Rankin EB, Rha J, Unger TL, Wu CH, Shutt HP, Johnson RS, Simon MC, Keith B, Haase VH (2008) Oncogene 27(40): 5354-8
    › Primary publication · 18490920 (PubMed) · PMC2575082 (PubMed Central)
  51. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Shah YM, Ito S, Morimura K, Chen C, Yim SH, Haase VH, Gonzalez FJ (2008) Gastroenterology 134(7): 2036-48, 2048.e1-3
    › Primary publication · 18439915 (PubMed) · PMC2533811 (PubMed Central)
  52. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, Yudkoff M, Hancock WW, Meade R, Saiki R, Lunceford AL, Clarke CF, Gasser DL (2008) PLoS Genet 4(4): e1000061
    › Primary publication · 18437205 (PubMed) · PMC2291193 (PubMed Central)
  53. Epidermal sensing of oxygen is essential for systemic hypoxic response. Boutin AT, Weidemann A, Fu Z, Mesropian L, Gradin K, Jamora C, Wiesener M, Eckardt KU, Koch CJ, Ellies LG, Haddad G, Haase VH, Simon MC, Poellinger L, Powell FL, Johnson RS (2008) Cell 133(2): 223-34
    › Primary publication · 18423195 (PubMed) · PMC2849644 (PubMed Central)
  54. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Higgins DF, Kimura K, Iwano M, Haase VH (2008) Cell Cycle 7(9): 1128-32
    › Primary publication · 18418042 (PubMed) · PMC3784650 (PubMed Central)
  55. Low oxygen stimulates the immune system. Maltzman JS, Haase VH (2008) Kidney Int 73(7): 797-9
    › Primary publication · 18340350 (PubMed) · PMC3791324 (PubMed Central)
  56. The VHL tumor suppressor and HIF: insights from genetic studies in mice. Kapitsinou PP, Haase VH (2008) Cell Death Differ 15(4): 650-9
    › Primary publication · 18219317 (PubMed) · PMC3799983 (PubMed Central)
  57. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) J Clin Invest 117(12): 3810-20
    › Primary publication · 18037992 (PubMed) · PMC2082142 (PubMed Central)
  58. Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Brukamp K, Jim B, Moeller MJ, Haase VH (2007) Am J Physiol Renal Physiol 293(4): F1397-407
    › Primary publication · 17609290 (PubMed)
  59. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS (2007) J Clin Invest 117(7): 1926-32
    › Primary publication · 17557118 (PubMed) · PMC1884690 (PubMed Central)
  60. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) J Clin Invest 117(6): 1616-26
    › Primary publication · 17549257 (PubMed) · PMC1878533 (PubMed Central)
  61. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Simon MC, Keith B, Haase VH (2007) J Clin Invest 117(4): 1068-77
    › Primary publication · 17404621 (PubMed) · PMC1838939 (PubMed Central)
  62. Loss of vascular endothelial growth factor expression reduces vascularization, but not growth, of tumors lacking the Von Hippel-Lindau tumor suppressor gene. Blouw B, Haase VH, Song H, Bergers G, Johnson RS (2007) Oncogene 26(31): 4531-40
    › Primary publication · 17297464 (PubMed)
  63. von Hippel Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-phosphatase. Park SK, Haase VH, Johnson RS (2007) Int J Oncol 30(2): 341-8
    › Primary publication · 17203215 (PubMed)
  64. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Ding M, Cui S, Li C, Jothy S, Haase V, Steer BM, Marsden PA, Pippin J, Shankland S, Rastaldi MP, Cohen CD, Kretzler M, Quaggin SE (2006) Nat Med 12(9): 1081-7
    › Primary publication · 16906157 (PubMed)
  65. Cytoprotective effects of hypoxia against cisplatin-induced tubular cell apoptosis: involvement of mitochondrial inhibition and p53 suppression. Wang J, Biju MP, Wang MH, Haase VH, Dong Z (2006) J Am Soc Nephrol 17(7): 1875-85
    › Primary publication · 16762987 (PubMed)
  66. Hypoxia-inducible factors in the kidney. Haase VH (2006) Am J Physiol Renal Physiol 291(2): F271-81
    › Primary publication · 16554418 (PubMed) · PMC4232221 (PubMed Central)
  67. pVHL function is essential for endothelial extracellular matrix deposition. Tang N, Mack F, Haase VH, Simon MC, Johnson RS (2006) Mol Cell Biol 26(7): 2519-30
    › Primary publication · 16537898 (PubMed) · PMC1430327 (PubMed Central)
  68. The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Haase VH (2006) Kidney Int 69(8): 1302-7
    › Primary publication · 16531988 (PubMed)
  69. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M (2006) Blood 108(1): 123-33
    › Primary publication · 16527892 (PubMed) · PMC1895827 (PubMed Central)
  70. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Rankin EB, Tomaszewski JE, Haase VH (2006) Cancer Res 66(5): 2576-83
    › Primary publication · 16510575 (PubMed) · PMC3514875 (PubMed Central)
  71. Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH, Freedman BD, Turka LA (2005) Proc Natl Acad Sci U S A 102(47): 17071-6
    › Primary publication · 16286658 (PubMed) · PMC1287984 (PubMed Central)
  72. Protection of HIF-1-deficient primary renal tubular epithelial cells from hypoxia-induced cell death is glucose dependent. Biju MP, Akai Y, Shrimanker N, Haase VH (2005) Am J Physiol Renal Physiol 289(6): F1217-26
    › Primary publication · 16048903 (PubMed)
  73. The VHL tumor suppressor in development and disease: functional studies in mice by conditional gene targeting. Haase VH (2005) Semin Cell Dev Biol 16(4-5): 564-74
    › Primary publication · 15908240 (PubMed) · PMC3787877 (PubMed Central)
  74. Decreased growth of Vhl-/- fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mack FA, Patel JH, Biju MP, Haase VH, Simon MC (2005) Mol Cell Biol 25(11): 4565-78
    › Primary publication · 15899860 (PubMed) · PMC1140627 (PubMed Central)
  75. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Rankin EB, Higgins DF, Walisser JA, Johnson RS, Bradfield CA, Haase VH (2005) Mol Cell Biol 25(8): 3163-72
    › Primary publication · 15798202 (PubMed) · PMC1069599 (PubMed Central)
  76. Inflammatory hypoxia: role of hypoxia-inducible factor. Karhausen J, Haase VH, Colgan SP (2005) Cell Cycle 4(2): 256-8
    › Primary publication · 15655360 (PubMed)
  77. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH (2004) J Clin Invest 114(8): 1098-106
    › Primary publication · 15489957 (PubMed) · PMC522241 (PubMed Central)
  78. Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH (2004) Mol Cell Biol 24(20): 9038-47
    › Primary publication · 15456877 (PubMed) · PMC517905 (PubMed Central)
  79. Hypoxic induction of Ctgf is directly mediated by Hif-1. Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH (2004) Am J Physiol Renal Physiol 287(6): F1223-32
    › Primary publication · 15315937 (PubMed)
  80. Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Pfander D, Kobayashi T, Knight MC, Zelzer E, Chan DA, Olsen BR, Giaccia AJ, Johnson RS, Haase VH, Schipani E (2004) Development 131(10): 2497-508
    › Primary publication · 15128677 (PubMed)
  81. DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): modulation during epithelial-mesenchymal transition. Higgins DF, Lappin DW, Kieran NE, Anders HJ, Watson RW, Strutz F, Schlondorff D, Haase VH, Fitzpatrick JM, Godson C, Brady HR (2003) Kidney Int 64(6): 2079-91
    › Primary publication · 14633130 (PubMed)
  82. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS (2003) Mol Cell Biol 23(14): 4959-71
    › Primary publication · 12832481 (PubMed) · PMC162224 (PubMed Central)
  83. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) Cell 112(5): 645-57
    › Primary publication · 12628185 (PubMed) · PMC4480774 (PubMed Central)
  84. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Blood 98(12): 3261-73
    › Primary publication · 11719363 (PubMed)
  85. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Haase VH, Glickman JN, Socolovsky M, Jaenisch R (2001) Proc Natl Acad Sci U S A 98(4): 1583-8
    › Primary publication · 11171994 (PubMed) · PMC29300 (PubMed Central)
  86. A lymphocyte-specific Ltk tyrosine kinase isoform is retained in the endoplasmic reticulum in association with calnexin. Snijders AJ, Ho SC, Haase VH, Pillai S, Bernards A (1997) J Biol Chem 272(2): 1297-301
    › Primary publication · 8995435 (PubMed)
  87. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K (1993) Cell 72(5): 791-800
    › Primary publication · 8453669 (PubMed)
  88. Four tissue-specific mouse ltk mRNAs predict tyrosine kinases that differ upstream of their transmembrane segment. Snijders AJ, Haase VH, Bernards A (1993) Oncogene 8(1): 27-35
    › Primary publication · 8380920 (PubMed)
  89. The murine NF2 homologue encodes a highly conserved merlin protein with alternative forms. Haase VH, Trofatter JA, MacCollin M, Tarttelin E, Gusella JF, Ramesh V (1994) Hum Mol Genet 3(3): 407-11
    › Primary publication · 8012352 (PubMed)
  90. Alternatively spliced ltk mRNA in neurons predicts a receptor with a larger putative extracellular domain. Haase VH, Snijders AJ, Cooke SM, Teng MN, Kaul D, Le Beau MM, Bruns GA, Bernards A (1991) Oncogene 6(12): 2319-25
    › Primary publication · 1662793 (PubMed)
  91. Complete human NF1 cDNA sequence: two alternatively spliced mRNAs and absence of expression in a neuroblastoma line. Bernards A, Haase VH, Murthy AE, Menon A, Hannigan GE, Gusella JF (1992) DNA Cell Biol 11(10): 727-34
    › Primary publication · 1457041 (PubMed)