Dayanidhi Raman
Last active: 1/29/2016


None provided


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Connecting the Dots: Therapy-Induced Senescence and a Tumor-Suppressive Immune Microenvironment. Vilgelm AE, Johnson CA, Prasad N, Yang J, Chen SC, Ayers GD, Pawlikowski JS, Raman D, Sosman JA, Kelley M, Ecsedy JA, Shyr Y, Levy SE, Richmond A (2016) J Natl Cancer Inst 108(6): djv406
    › Primary publication · 26719346 (PubMed) · PMC4849355 (PubMed Central)
  2. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Duvall-Noelle N, Karwandyar A, Richmond A, Raman D (2016) Oncogene 35(9): 1122-33
    › Primary publication · 25982273 (PubMed) · PMC4651668 (PubMed Central)
  3. Adaptor protein2 (AP2) orchestrates CXCR2-mediated cell migration. Raman D, Sai J, Hawkins O, Richmond A (2014) Traffic 15(4): 451-69
    › Primary publication · 24450359 (PubMed) · PMC3966550 (PubMed Central)
  4. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Raman D, Milatovic SZ, Milatovic D, Splittgerber R, Fan GH, Richmond A (2011) Toxicol Appl Pharmacol 256(3): 300-13
    › Primary publication · 21704645 (PubMed) · PMC3236026 (PubMed Central)
  5. Chemokines in health and disease. Raman D, Sobolik-Delmaire T, Richmond A (2011) Exp Cell Res 317(5): 575-89
    › Primary publication · 21223965 (PubMed) · PMC3063402 (PubMed Central)
  6. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration. Raman D, Sai J, Neel NF, Chew CS, Richmond A (2010) PLoS One 5(4): e10050
    › Primary publication · 20419088 (PubMed) · PMC2856662 (PubMed Central)
  7. Characterization of chemokine receptor CXCR2 interacting proteins using a proteomics approach to define the CXCR2 "chemosynapse". Raman D, Neel NF, Sai J, Mernaugh RL, Ham AJ, Richmond AJ (2009) Methods Enzymol : 315-30
    › Primary publication · 19446732 (PubMed) · PMC3140414 (PubMed Central)
  8. VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis. Neel NF, Barzik M, Raman D, Sobolik-Delmaire T, Sai J, Ham AJ, Mernaugh RL, Gertler FB, Richmond A (2009) J Cell Sci 122(Pt 11): 1882-94
    › Primary publication · 19435808 (PubMed) · PMC2684839 (PubMed Central)
  9. Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis. Sai J, Raman D, Liu Y, Wikswo J, Richmond A (2008) J Biol Chem 283(39): 26538-47
    › Primary publication · 18662984 (PubMed) · PMC2546539 (PubMed Central)
  10. Regulation of arrestin binding by rhodopsin phosphorylation level. Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) J Biol Chem 282(44): 32075-83
    › Primary publication · 17848565 (PubMed) · PMC2638115 (PubMed Central)
  11. Role of chemokines in tumor growth. Raman D, Baugher PJ, Thu YM, Richmond A (2007) Cancer Lett 256(2): 137-65
    › Primary publication · 17629396 (PubMed) · PMC2065851 (PubMed Central)
  12. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW (2007) Cancer Res 67(9): 4244-53
    › Primary publication · 17483336 (PubMed)
  13. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007) J Mol Biol 368(2): 375-87
    › Primary publication · 17359998 (PubMed) · PMC1904837 (PubMed Central)
  14. Deletion of the COOH-terminal domain of CXC chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Ueda Y, Neel NF, Schutyser E, Raman D, Richmond A (2006) Cancer Res 66(11): 5665-75
    › Primary publication · 16740704 (PubMed) · PMC2664111 (PubMed Central)
  15. Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) J Biol Chem 281(30): 21491-21499
    › Primary publication · 16737965 (PubMed) · PMC2430869 (PubMed Central)
  16. Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) J Mol Biol 354(5): 1069-80
    › Primary publication · 16289201 (PubMed)
  17. The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding. Raman D, Osawa S, Gurevich VV, Weiss ER (2003) J Neurochem 84(5): 1040-50
    › Primary publication · 12603828 (PubMed)
  18. Heterologous expression and reconstitution of rhodopsin with rhodopsin kinase and arrestin. Osawa S, Raman D, Weiss ER (2000) Methods Enzymol : 411-22
    › Primary publication · 10736717 (PubMed)
  19. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin. Raman D, Osawa S, Weiss ER (1999) Biochemistry 38(16): 5117-23
    › Primary publication · 10213616 (PubMed)
  20. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S (1998) Mol Vis : 27
    › Primary publication · 9852166 (PubMed)
  21. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal. Shi W, Sports CD, Raman D, Shirakawa S, Osawa S, Weiss ER (1998) Biochemistry 37(14): 4869-74
    › Primary publication · 9538004 (PubMed)