Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

Wang K, Guengerich FP
Chem Res Toxicol. 2013 26 (6): 993-1004

PMID: 23682735 · PMCID: PMC3707514 · DOI:10.1021/tx400139p

Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

MeSH Terms (6)

Cytochrome P-450 Enzyme System Heterocyclic Compounds Humans Hydroxylamines Molecular Structure Oxidation-Reduction

Connections (1)

This publication is referenced by other Labnodes entities: