Host deficiency in ephrin-A1 inhibits breast cancer metastasis.

Shiuan E, Inala A, Wang S, Song W, Youngblood V, Chen J, Brantley-Sieders DM
F1000Res. 2020 9: 217

PMID: 32399207 · PMCID: PMC7194498.2 · DOI:10.12688/f1000research.22689.2

The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( ), heterozygous ( ), or knockout ( ) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. While primary tumor growth did not differ between , , and mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. mice had reduced lung colonization of 4T1 cells compared to littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in mice had reduced proliferation compared to those in controls. Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.

Copyright: © 2020 Shiuan E et al.

MeSH Terms (0)

Connections (1)

This publication is referenced by other Labnodes entities:

Links