Synthesis and in vitro efficacy of MMP9-activated NanoDendrons.

Samuelson LE, Scherer RL, Matrisian LM, McIntyre JO, Bornhop DJ
Mol Pharm. 2013 10 (8): 3164-74

PMID: 23750801 · PMCID: PMC4824186 · DOI:10.1021/mp4002206

Chemotherapeutics such as doxorubicin (DOX) and paclitaxel (PXL) have dose-limiting systemic toxicities, including cardiotoxicity and peripheral neuropathy. Delivery strategies to minimize these undesirable effects are needed and could improve efficacy, while reducing patient morbidity. Here, DOX and PXL were conjugated to a nanodendron (ND) through an MMP9-cleavable peptide linker, producing two new therapies, ND2(DOX) and ND2(PXL), designed to improve delivery specificity to the tumor microenvironment and reduce systemic toxicity. Comparative cytotoxicity assays were performed between intact ND-drug conjugates and the MMP9 released drug in cell lines with and without MMP9 expression. While ND2(DOX) was found to lose cytotoxicity due to the modification of DOX for conjugation to the ND; ND2(PXL) was determined to have the desired properties for a prodrug delivery system. ND2(PXL) was found to be cytotoxic in MMP9-expressing mouse mammary carcinoma (R221A-luc) (53%) and human breast carcinoma (MDA-MB-231) (66%) at a concentration of 50 nM (in PXL) after 48 h. Treating ND2(PXL) with MMP9 prior to the cytotoxicity assay resulted in a faster response; however, both cleaved and intact versions of the drug reached the same efficacy as the unmodified drug by 96 h in the R221A-luc and MDA-MB-231 cell lines. Further studies in modified Lewis lung carcinoma cells that either do (LLC(MMP9)) or do not (LLC(RSV)) express MMP9 demonstrate the selectivity of ND2(PXL) for MMP9. LLC(MMP9) cells were only 20% viable after 48 h of treatment, while LLC(RSV) were not affected. Inclusion of an MMP inhibitor, GM6001, when treating the LLC(MMP9) cells with ND2(PXL) eliminated the response of the MMP9 expressing cells (LLC(MMP9)). The data presented here suggests that these NDs, specifically ND2(PXL), are nontoxic until activated by MMP9, a protease common in the microenvironment of tumors, indicating that incorporation of chemotherapeutic or cytostatic agents onto the ND platform have potential for tumor-targeted efficacy with reduced in vivo systemic toxicities.

MeSH Terms (11)

Animals Cell Line, Tumor Dipeptides Doxorubicin Drug Delivery Systems Humans Matrix Metalloproteinase 9 Matrix Metalloproteinase Inhibitors Paclitaxel Prodrugs Rats

Connections (3)

This publication is referenced by other Labnodes entities: