Architecture of a eukaryotic cell largely depends on microtubules (MTs), 25-nm self-assembling polymers that serve as highways for organelle and molecular transport within a cell. During cell division, MTs drive chromosome segregation. In interphase cells, MTs position organelles and site-specific activities like actin assembly or proteolysis, thereby defining cell shape and polarity. For years, an intriguing question has been how MTs within a cell can perform multiple actions that are spatially and temporally distinct. We think that it can only be possible if functionally distinct subsets exist within the MT network and if these subsets are precisely localized within a cell.

Our lab is interested in:
1) Establishing principles of diversity and asymmetry within MT networks. We study the MT network as a combination of subsets of diverse origin, dynamics and molecular composition. We have recently discovered a novel MT population, which forms at Golgi complex and are distinct from the centrosomal MT array. Elucidating their molecular and functional properties is one of our close goals.
2) Understanding how variations in MT subsets are translated into specifics of cellular architecture and functioning. We aim to resolve general principles of this regulatory system as well as its cell-type-specific functions. In particular, we study MT-dependent regulation of: 1) normal and cancer cell motility; 2) actin cytoskeleton in vascular smooth muscle cells; 3) insulin secretion in pancreatic beta cells.

The astrophysicist Bernard Haisch once said "Advances are made by answering questions. Discoveries are made by questioning answers." This approach is very appealing to us. Our research is based on a set of dogma-challenging hypotheses that we test through a unique combination of cutting edge high-resolution microscopy techniques supported by molecular and biochemical approaches and merged with mathematical modeling.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I (2014) Mol Biol Cell 25(6): 800-10
    › Primary publication · 24478455 (PubMed) · PMC3952850 (PubMed Central)
  2. Ice recovery assay for detection of Golgi-derived microtubules. Grimaldi AD, Fomicheva M, Kaverina I (2013) Methods Cell Biol : 401-15
    › Primary publication · 24295320 (PubMed) · PMC4135712 (PubMed Central)
  3. Golgi as an MTOC: making microtubules for its own good. Zhu X, Kaverina I (2013) Histochem Cell Biol 140(3): 361-7
    › Primary publication · 23821162 (PubMed) · PMC3748218 (PubMed Central)
  4. The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization. Alieva IB, Zemskov EA, Smurova KM, Kaverina IN, Verin AD (2013) J Cell Biochem 114(10): 2258-72
    › Primary publication · 23606375 (PubMed) · PMC3901434 (PubMed Central)
  5. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H (2012) J Cell Biol 199(2): 285-301
    › Primary publication · 23045552 (PubMed) · PMC3471233 (PubMed Central)
  6. Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I (2013) Cytoskeleton (Hoboken) 70(1): 32-43
    › Primary publication · 23027431 (PubMed) · PMC3574797 (PubMed Central)
  7. Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Vinogradova T, Paul R, Grimaldi AD, Loncarek J, Miller PM, Yampolsky D, Magidson V, Khodjakov A, Mogilner A, Kaverina I (2012) Mol Biol Cell 23(5): 820-33
    › Primary publication · 22262454 (PubMed) · PMC3290642 (PubMed Central)
  8. Regulation of cell migration by dynamic microtubules. Kaverina I, Straube A (2011) Semin Cell Dev Biol 22(9): 968-74
    › Primary publication · 22001384 (PubMed) · PMC3256984 (PubMed Central)
  9. Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Sung BH, Zhu X, Kaverina I, Weaver AM (2011) Curr Biol 21(17): 1460-9
    › Primary publication · 21856159 (PubMed) · PMC3175319 (PubMed Central)
  10. Quantification of asymmetric microtubule nucleation at subcellular structures. Zhu X, Kaverina I (2011) Methods Mol Biol : 235-44
    › Primary publication · 21773933 (PubMed) · PMC3282175 (PubMed Central)
  11. Proper regulation of Cdc42 activity is required for tight actin concentration at the equator during cytokinesis in adherent mammalian cells. Zhu X, Wang J, Moriguchi K, Liow LT, Ahmed S, Kaverina I, Murata-Hori M (2011) Exp Cell Res 317(16): 2384-9
    › Primary publication · 21763307 (PubMed) · PMC3282173 (PubMed Central)
  12. P130Cas Src-binding and substrate domains have distinct roles in sustaining focal adhesion disassembly and promoting cell migration. Meenderink LM, Ryzhova LM, Donato DM, Gochberg DF, Kaverina I, Hanks SK (2010) PLoS One 5(10): e13412
    › Primary publication · 20976150 (PubMed) · PMC2956669 (PubMed Central)
  13. Dynamics and mechanism of p130Cas localization to focal adhesions. Donato DM, Ryzhova LM, Meenderink LM, Kaverina I, Hanks SK (2010) J Biol Chem 285(27): 20769-79
    › Primary publication · 20430882 (PubMed) · PMC2898362 (PubMed Central)
  14. Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Moynihan KL, Pooley R, Miller PM, Kaverina I, Bader DM (2009) Mol Biol Cell 20(22): 4790-803
    › Primary publication · 19793914 (PubMed) · PMC2777108 (PubMed Central)
  15. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Nat Cell Biol 11(9): 1069-80
    › Primary publication · 19701196 (PubMed) · PMC2748871 (PubMed Central)
  16. Microtubule network asymmetry in motile cells: role of Golgi-derived array. Vinogradova T, Miller PM, Kaverina I (2009) Cell Cycle 8(14): 2168-74
    › Primary publication · 19556895 (PubMed) · PMC3163838 (PubMed Central)
  17. Significance of microtubule catastrophes at focal adhesion sites. Efimov A, Kaverina I (2009) Cell Adh Migr 3(3): 285-7
    › Primary publication · 19483470 (PubMed) · PMC2712812 (PubMed Central)
  18. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules. Kolobova E, Efimov A, Kaverina I, Rishi AK, Schrader JW, Ham AJ, Larocca MC, Goldenring JR (2009) Exp Cell Res 315(3): 542-55
    › Primary publication · 19073175 (PubMed) · PMC2788823 (PubMed Central)
  19. Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. Efimov A, Schiefermeier N, Grigoriev I, Ohi R, Brown MC, Turner CE, Small JV, Kaverina I (2008) J Cell Sci 121(Pt 2): 196-204
    › Primary publication · 18187451 (PubMed) · PMC3164837 (PubMed Central)
  20. Asymmetric focal adhesion disassembly in motile cells. Broussard JA, Webb DJ, Kaverina I (2008) Curr Opin Cell Biol 20(1): 85-90
    › Primary publication · 18083360 (PubMed)
  21. A FAK/Src chimera with gain-of-function properties promotes formation of large peripheral adhesions associated with dynamic actin assembly. Siesser PM, Meenderink LM, Ryzhova L, Michael KE, Dumbauld DW, García AJ, Kaverina I, Hanks SK (2008) Cell Motil Cytoskeleton 65(1): 25-39
    › Primary publication · 17922492 (PubMed) · PMC2387247 (PubMed Central)
  22. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Dev Cell 12(6): 917-30
    › Primary publication · 17543864 (PubMed) · PMC2705290 (PubMed Central)
  23. Major sperm protein signaling promotes oocyte microtubule reorganization prior to fertilization in Caenorhabditis elegans. Harris JE, Govindan JA, Yamamoto I, Schwartz J, Kaverina I, Greenstein D (2006) Dev Biol 299(1): 105-21
    › Primary publication · 16919258 (PubMed)
  24. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF (2005) J Cell Sci 118(Pt 20): 4765-83
    › Primary publication · 16219685 (PubMed)
  25. The last but not the least: the origin and significance of trailing adhesions in fibroblastic cells. Rid R, Schiefermeier N, Grigoriev I, Small JV, Kaverina I (2005) Cell Motil Cytoskeleton 61(3): 161-71
    › Primary publication · 15909298 (PubMed)
  26. A novel interaction between kinesin and p120 modulates p120 localization and function. Yanagisawa M, Kaverina IN, Wang A, Fujita Y, Reynolds AB, Anastasiadis PZ (2004) J Biol Chem 279(10): 9512-21
    › Primary publication · 14676216 (PubMed)
  27. Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. Kaverina I, Stradal TE, Gimona M (2003) J Cell Sci 116(Pt 24): 4915-24
    › Primary publication · 14625385 (PubMed)
  28. Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G (2003) Mol Biol Cell 14(6): 2482-91
    › Primary publication · 12808045 (PubMed) · PMC194896 (PubMed Central)
  29. Nanometer targeting of microtubules to focal adhesions. Krylyshkina O, Anderson KI, Kaverina I, Upmann I, Manstein DJ, Small JV, Toomre DK (2003) J Cell Biol 161(5): 853-9
    › Primary publication · 12782685 (PubMed) · PMC2172972 (PubMed Central)
  30. Microtubules meet substrate adhesions to arrange cell polarity. Small JV, Kaverina I (2003) Curr Opin Cell Biol 15(1): 40-7
    › Primary publication · 12517702 (PubMed)
  31. How do microtubules guide migrating cells? Small JV, Geiger B, Kaverina I, Bershadsky A (2002) Nat Rev Mol Cell Biol 3(12): 957-64
    › Primary publication · 12461561 (PubMed)
  32. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Hoogenraad CC, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M, van Alphen A, Kistler WM, Jaegle M, Koutsourakis M, Van Camp N, Verhoye M, van der Linden A, Kaverina I, Grosveld F, De Zeeuw CI, Galjart N (2002) Nat Genet 32(1): 116-27
    › Primary publication · 12195424 (PubMed)
  33. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) J Cell Sci 115(Pt 17): 3415-25
    › Primary publication · 12154072 (PubMed)
  34. Tensile stress stimulates microtubule outgrowth in living cells. Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) J Cell Sci 115(Pt 11): 2283-91
    › Primary publication · 12006613 (PubMed)
  35. Regulation of substrate adhesion dynamics during cell motility. Kaverina I, Krylyshkina O, Small JV (2002) Int J Biochem Cell Biol 34(7): 746-61
    › Primary publication · 11950592 (PubMed)
  36. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. Krylyshkina O, Kaverina I, Kranewitter W, Steffen W, Alonso MC, Cross RA, Small JV (2002) J Cell Biol 156(2): 349-59
    › Primary publication · 11807097 (PubMed) · PMC2199234 (PubMed Central)
  37. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) J Cell Biol 153(4): 881-8
    › Primary publication · 11352946 (PubMed) · PMC2192381 (PubMed Central)
  38. Enforced polarisation and locomotion of fibroblasts lacking microtubules. Kaverina I, Krylyshkina O, Gimona M, Beningo K, Wang YL, Small JV (2000) Curr Biol 10(12): 739-42
    › Primary publication · 10873805 (PubMed)
  39. Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. Oliferenko S, Kaverina I, Small JV, Huber LA (2000) J Cell Biol 148(6): 1159-64
    › Primary publication · 10725329 (PubMed) · PMC2174315 (PubMed Central)
  40. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. Kaverina I, Krylyshkina O, Small JV (1999) J Cell Biol 146(5): 1033-44
    › Primary publication · 10477757 (PubMed) · PMC2169483 (PubMed Central)
  41. Cytoskeleton cross-talk during cell motility. Small JV, Kaverina I, Krylyshkina O, Rottner K (1999) FEBS Lett 452(1-2): 96-9
    › Primary publication · 10376686 (PubMed)
  42. [Changes in morphology, cytoskeleton, and substrate dependence of proliferation induced by transfection of the rat immortalized embryonal fibroblasts with human papilloma E7 viral gene type 16]. Zhurbitskaia VA, Rovenskiĭ IuA, Kaverina IN (1999) Biull Eksp Biol Med 127(1): 109-13
    › Primary publication · 10190020 (PubMed)
  43. Functional design in the actin cytoskeleton. Small JV, Rottner K, Kaverina I (1999) Curr Opin Cell Biol 11(1): 54-60
    › Primary publication · 10047522 (PubMed)
  44. Assembling an actin cytoskeleton for cell attachment and movement. Small JV, Rottner K, Kaverina I, Anderson KI (1998) Biochim Biophys Acta 1404(3): 271-81
    › Primary publication · 9739149 (PubMed)
  45. Targeting, capture, and stabilization of microtubules at early focal adhesions. Kaverina I, Rottner K, Small JV (1998) J Cell Biol 142(1): 181-90
    › Primary publication · 9660872 (PubMed) · PMC2133026 (PubMed Central)
  46. Scatter factor induces segregation of multinuclear cells into several discrete motile domains. Alexandrova AY, Dugina VB, Ivanova OY, Kaverina IN, Vasiliev JM (1998) Cell Motil Cytoskeleton 39(2): 147-58
    › Primary publication · 9484956 (PubMed)
  47. Kinesin-associated transport is involved in the regulation of cell adhesion. Kaverina IN, Minin AA, Gyoeva FK, Vasiliev JM (1997) Cell Biol Int 21(4): 229-36
    › Primary publication · 9204536 (PubMed)
  48. Two novel variants of the v-src oncogene isolated from low and high metastatic RSV-transformed hamster cells. Tatosyan A, Yatsula B, Shtutman M, Moinova E, Kaverina I, Musatkina E, Leskov K, Mizenina O, Zueva E, Calothy G, Dezélée P (1996) Virology 216(2): 347-56
    › Primary publication · 8607264 (PubMed)
  49. Taxol-treated fibroblasts acquire an epithelioid shape and a circular pattern of actin bundles. Pletjushkina OJ, Ivanova OJ, Kaverina IN, Vasiliev JM (1994) Exp Cell Res 212(2): 201-8
    › Primary publication · 7910561 (PubMed)
  50. [Disorders of the actin cytoskeleton in transformed epithelial cells]. Svitkina TM, Kaverina IN (1989) Tsitologiia 31(12): 1441-7
    › Primary publication · 2637543 (PubMed)
  51. [The effect of the depolymerization and disintegration of the microtubular system on the cytoskeleton of untransformed and transformed cells]. Kaverina IN, Vasil'ev IuM (1991) Tsitologiia 33(12): 49-53
    › Primary publication · 1688146 (PubMed)