We use a variety of animal models, isotopic techniques and analytical methods that allow us to study metabolism from gene to the whole organism. In many of our studies we use physical exercise, insulin-stimulation or diet to perturb metabolic fuel systems. The research we undertake is not only critical to a basic understanding of fuel metabolism but also has important implications to diabetes and heart disease. Possible research projects include studies of: a. site-specific (extracellular glucose delivery, glucose transport, glucose phosphorylation) regulation of muscle glucose uptake in normal physiology, in insulin resistant states induced by high fat feeding and in insulin sensitive states induced by physical exercise. b. roles of insulin, glucagon, and glucagon-like peptides in regulation of hepatic glucose metabolism during and after exercise. c. integrated control of glucose and fat metabolism in health and disease. d. central role of AMP kinase in control of intra- and interorgan fuel fluxes.


The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. Reply to Letter to the Editor: Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. McClatchey PM, Williams IM, Xu Z, Mignemi NA, Hughey CC, McGuinness OP, Beckman JA, Wasserman DH, Poole DC, Akerstrom T, Goldman D, Fraser GM, Ellis CG (2020) Am J Physiol Endocrinol Metab 318(3): E313-E317
    › Primary publication · 32068464 (PubMed)
  2. Transendothelial Insulin Transport is Impaired in Skeletal Muscle Capillaries of Obese Male Mice. Williams IM, McClatchey PM, Bracy DP, Bonner JS, Valenzuela FA, Wasserman DH (2020) Obesity (Silver Spring) 28(2): 303-314
    › Primary publication · 31903723 (PubMed) · PMC6980999 (PubMed Central)
  3. Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo. McClatchey PM, Williams IM, Xu Z, Mignemi NA, Hughey CC, McGuinness OP, Beckman JA, Wasserman DH (2019) Am J Physiol Endocrinol Metab 317(6): E1022-E1036
    › Primary publication · 31526289 (PubMed) · PMC6957378 (PubMed Central)
  4. Fibrotic Encapsulation Is the Dominant Source of Continuous Glucose Monitor Delays. McClatchey PM, McClain ES, Williams IM, Malabanan CM, James FD, Lord PC, Gregory JM, Cliffel DE, Wasserman DH (2019) Diabetes 68(10): 1892-1901
    › Primary publication · 31399432 (PubMed) · PMC6754243 (PubMed Central)
  5. Acute Nitric Oxide Synthase Inhibition Accelerates Transendothelial Insulin Efflux In Vivo. Williams IM, McClatchey PM, Bracy DP, Valenzuela FA, Wasserman DH (2018) Diabetes 67(10): 1962-1975
    › Primary publication · 30002132 (PubMed) · PMC6152344 (PubMed Central)
  6. Automated quantification of microvascular perfusion. McClatchey PM, Mignemi NA, Xu Z, Williams IM, Reusch JEB, McGuinness OP, Wasserman DH (2018) Microcirculation 25(6): e12482
    › Primary publication · 29908041 (PubMed) · PMC6401325 (PubMed Central)
  7. Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Williams AS, Trefts E, Lantier L, Grueter CA, Bracy DP, James FD, Pozzi A, Zent R, Wasserman DH (2017) Diabetes 66(2): 325-334
    › Primary publication · 27899483 (PubMed) · PMC5248997 (PubMed Central)
  8. Integrin-Linked Kinase in Muscle Is Necessary for the Development of Insulin Resistance in Diet-Induced Obese Mice. Kang L, Mokshagundam S, Reuter B, Lark DS, Sneddon CC, Hennayake C, Williams AS, Bracy DP, James FD, Pozzi A, Zent R, Wasserman DH (2016) Diabetes 65(6): 1590-600
    › Primary publication · 27207548 (PubMed) · PMC4878430 (PubMed Central)
  9. VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. Robciuc MR, Kivelä R, Williams IM, de Boer JF, van Dijk TH, Elamaa H, Tigistu-Sahle F, Molotkov D, Leppänen VM, Käkelä R, Eklund L, Wasserman DH, Groen AK, Alitalo K (2016) Cell Metab 23(4): 712-24
    › Primary publication · 27076080 (PubMed) · PMC5898626 (PubMed Central)
  10. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure. Williams IM, Otero YF, Bracy DP, Wasserman DH, Biaggioni I, Arnold AC (2016) Hypertension 67(5): 983-91
    › Primary publication · 26975707 (PubMed) · PMC4833535 (PubMed Central)
  11. Enhanced Glucose Transport, but not Phosphorylation Capacity, Ameliorates Lipopolysaccharide-Induced Impairments in Insulin-Stimulated Muscle Glucose Uptake. Otero YF, Mulligan KX, Barnes TM, Ford EA, Malabanan CM, Zong H, Pessin JE, Wasserman DH, McGuinness OP (2016) Shock 45(6): 677-85
    › Primary publication · 26682946 (PubMed) · PMC4868638 (PubMed Central)
  12. Exercise and the Regulation of Hepatic Metabolism. Trefts E, Williams AS, Wasserman DH (2015) Prog Mol Biol Transl Sci : 203-25
    › Primary publication · 26477916 (PubMed) · PMC4826571 (PubMed Central)
  13. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity. Cappel DA, Lantier L, Palmisano BT, Wasserman DH, Stafford JM (2015) PLoS One 10(8): e0136915
    › Primary publication · 26313355 (PubMed) · PMC4551677 (PubMed Central)
  14. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, Bordenstein SR, Guo Y, Wasserman DH, Abumrad NN (2015) Nat Commun : 7715
    › Primary publication · 26197299 (PubMed) · PMC4518285 (PubMed Central)
  15. The extracellular matrix and insulin resistance. Williams AS, Kang L, Wasserman DH (2015) Trends Endocrinol Metab 26(7): 357-66
    › Primary publication · 26059707 (PubMed) · PMC4490038 (PubMed Central)
  16. Enhanced mitochondrial superoxide scavenging does not improve muscle insulin action in the high fat-fed mouse. Lark DS, Kang L, Lustig ME, Bonner JS, James FD, Neufer PD, Wasserman DH (2015) PLoS One 10(5): e0126732
    › Primary publication · 25992608 (PubMed) · PMC4437982 (PubMed Central)
  17. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo. Hasenour CM, Wall ML, Ridley DE, Hughey CC, James FD, Wasserman DH, Young JD (2015) Am J Physiol Endocrinol Metab 309(2): E191-203
    › Primary publication · 25991647 (PubMed) · PMC4504936 (PubMed Central)
  18. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice. Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D, Wasserman DH (2015) Diabetes 64(9): 3081-92
    › Primary publication · 25948682 (PubMed) · PMC4542443 (PubMed Central)
  19. Integrin α1-null mice exhibit improved fatty liver when fed a high fat diet despite severe hepatic insulin resistance. Williams AS, Kang L, Zheng J, Grueter C, Bracy DP, James FD, Pozzi A, Wasserman DH (2015) J Biol Chem 290(10): 6546-57
    › Primary publication · 25593319 (PubMed) · PMC4358288 (PubMed Central)
  20. Mouse Models of Bariatric Surgery. Yin DP, Boyd KL, Williams PE, Abumrad NN, Wasserman DH (2012) Curr Protoc Mouse Biol
    › Primary publication · 25364628 (PubMed) · PMC4214370 (PubMed Central)
  21. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Hughey CC, Wasserman DH, Lee-Young RS, Lantier L (2014) Mamm Genome 25(9-10): 522-38
    › Primary publication · 25074441 (PubMed) · PMC4167555 (PubMed Central)
  22. Striatal dopamine homeostasis is altered in mice following Roux-en-Y gastric bypass surgery. Reddy IA, Wasserman DH, Ayala JE, Hasty AH, Abumrad NN, Galli A (2014) ACS Chem Neurosci 5(10): 943-51
    › Primary publication · 25068716 (PubMed) · PMC4324416 (PubMed Central)
  23. Heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion, but not insulin action, in high-fat-fed mice. Kang L, Dai C, Lustig ME, Bonner JS, Mayes WH, Mokshagundam S, James FD, Thompson CS, Lin CT, Perry CG, Anderson EJ, Neufer PD, Wasserman DH, Powers AC (2014) Diabetes 63(11): 3699-710
    › Primary publication · 24947366 (PubMed) · PMC4207395 (PubMed Central)
  24. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. Hasenour CM, Ridley DE, Hughey CC, James FD, Donahue EP, Shearer J, Viollet B, Foretz M, Wasserman DH (2014) J Biol Chem 289(9): 5950-9
    › Primary publication · 24403081 (PubMed) · PMC3937663 (PubMed Central)
  25. Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Kang L, Mayes WH, James FD, Bracy DP, Wasserman DH (2014) Diabetologia 57(3): 603-13
    › Primary publication · 24305966 (PubMed) · PMC4155606 (PubMed Central)
  26. Diminishing impairments in glucose uptake, mitochondrial content, and ADP-stimulated oxygen flux by mesenchymal stem cell therapy in the infarcted heart. Hughey CC, James FD, Ma L, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Shearer J (2014) Am J Physiol Cell Physiol 306(1): C19-27
    › Primary publication · 24196528 (PubMed) · PMC3919976 (PubMed Central)
  27. FGF19 action in the brain induces insulin-independent glucose lowering. Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, Bergman RN, Wasserman DH, Schwartz MW (2013) J Clin Invest 123(11): 4799-808
    › Primary publication · 24084738 (PubMed) · PMC3809800 (PubMed Central)
  28. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Bonner JS, Lantier L, Hocking KM, Kang L, Owolabi M, James FD, Bracy DP, Brophy CM, Wasserman DH (2013) Diabetes 62(9): 3251-60
    › Primary publication · 23801576 (PubMed) · PMC3749347 (PubMed Central)
  29. Circadian disruption leads to insulin resistance and obesity. Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH (2013) Curr Biol 23(5): 372-81
    › Primary publication · 23434278 (PubMed) · PMC3595381 (PubMed Central)
  30. Amino acids as metabolic substrates during cardiac ischemia. Drake KJ, Sidorov VY, McGuinness OP, Wasserman DH, Wikswo JP (2012) Exp Biol Med (Maywood) 237(12): 1369-78
    › Primary publication · 23354395 (PubMed) · PMC3816490 (PubMed Central)
  31. Hyaluronan accumulates with high-fat feeding and contributes to insulin resistance. Kang L, Lantier L, Kennedy A, Bonner JS, Mayes WH, Bracy DP, Bookbinder LH, Hasty AH, Thompson CB, Wasserman DH (2013) Diabetes 62(6): 1888-96
    › Primary publication · 23349492 (PubMed) · PMC3661617 (PubMed Central)
  32. Regulation of endogenous glucose production in glucose transporter 4 over-expressing mice. Berglund ED, Li CY, Ayala JE, McGuinness OP, Wasserman DH (2012) PLoS One 7(12): e52355
    › Primary publication · 23285006 (PubMed) · PMC3524103 (PubMed Central)
  33. AMP-activated protein kinase (AMPK)α2 plays a role in determining the cellular fate of glucose in insulin-resistant mouse skeletal muscle. Lee-Young RS, Bonner JS, Mayes WH, Iwueke I, Barrick BA, Hasenour CM, Kang L, Wasserman DH (2013) Diabetologia 56(3): 608-17
    › Primary publication · 23224579 (PubMed) · PMC4075509 (PubMed Central)
  34. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH (2013) Diabetes 62(2): 572-80
    › Primary publication · 23002035 (PubMed) · PMC3554359 (PubMed Central)
  35. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Hasenour CM, Berglund ED, Wasserman DH (2013) Mol Cell Endocrinol 366(2): 152-62
    › Primary publication · 22796337 (PubMed) · PMC3538936 (PubMed Central)
  36. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Orr JS, Puglisi MJ, Ellacott KL, Lumeng CN, Wasserman DH, Hasty AH (2012) Diabetes 61(11): 2718-27
    › Primary publication · 22751700 (PubMed) · PMC3478520 (PubMed Central)
  37. Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet. Kang L, Lustig ME, Bonner JS, Lee-Young RS, Mayes WH, James FD, Lin CT, Perry CG, Anderson EJ, Neufer PD, Wasserman DH (2012) J Appl Physiol (1985) 113(8): 1173-83
    › Primary publication · 22653994 (PubMed) · PMC3472490 (PubMed Central)
  38. Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver. Berglund ED, Lustig DG, Baheza RA, Hasenour CM, Lee-Young RS, Donahue EP, Lynes SE, Swift LL, Charron MJ, Damon BM, Wasserman DH (2011) Diabetes 60(11): 2720-9
    › Primary publication · 21885872 (PubMed) · PMC3198076 (PubMed Central)
  39. Diet-induced muscle insulin resistance is associated with extracellular matrix remodeling and interaction with integrin alpha2beta1 in mice. Kang L, Ayala JE, Lee-Young RS, Zhang Z, James FD, Neufer PD, Pozzi A, Zutter MM, Wasserman DH (2011) Diabetes 60(2): 416-26
    › Primary publication · 21270253 (PubMed) · PMC3028340 (PubMed Central)