My research focuses on understanding how growth factors (e.g. TGF-beta, Wnt/beta-catenin) modulate the renal response to acute and chronic injury. Growth factors such as TGF-beta mediate different cellular effects depending upon the target cell type. As the epithelial cells are often the target of renal injury, we have used the Cre/lox system to generate mice lacking various growth factors and transcription factors specifically in renal tubules. In addition, we have generated specific cell populations in vitro to better understand how growth factors affect cell cycle progression, mitochondrial function, and other cellular responses. I was previously funded by a VA Career Development Award and now have NIH funding to investigate growth factors and renal epithelial injury. 



The following timeline graph is generated from all co-authored publications.

Featured publications are shown below:

  1. TGF-β and Diabetic Nephropathy: Lessons Learned Over the Past 20 Years. Gewin LS (2020) Am J Med Sci 359(2): 70-72
    › Primary publication · 32039767 (PubMed) · PMC9141889 (PubMed Central)
  2. Sirtuin 6 and renal injury: another link in the β-catenin chain? Gewin LS (2020) Kidney Int 97(1): 24-27
    › Primary publication · 31901350 (PubMed)
  3. Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV (2019) J Clin Invest 129(11): 4797-4816
    › Primary publication · 31589169 (PubMed) · PMC6819104 (PubMed Central)
  4. Inactivation of in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney. Gewin LS, Summers ME, Harral JW, Gaskill CF, Khodo SN, Neelisetty S, Sullivan TM, Hopp K, Reese JJ, Klemm DJ, Kon V, Ess KC, Shi W, Majka SM (2019) Am J Physiol Renal Physiol 317(5): F1201-F1210
    › Primary publication · 31461347 (PubMed) · PMC6879939 (PubMed Central)
  5. Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB (2019) Nephrol Dial Transplant 34(12): 2042-2050
    › Primary publication · 31071225 (PubMed) · PMC6887698 (PubMed Central)
  6. Transforming Growth Factor-β in the Acute Kidney Injury to Chronic Kidney Disease Transition. Gewin LS (2019) Nephron 143(3): 154-157
    › Primary publication · 31039574 (PubMed) · PMC6821554 (PubMed Central)
  7. The Cre/lox system: Cre-ating unintended damage. Gewin LS (2019) Am J Physiol Renal Physiol 316(5): F873-F874
    › Primary publication · 30943071 (PubMed) · PMC6580253 (PubMed Central)
  8. The many talents of transforming growth factor-β in the kidney. Gewin L (2019) Curr Opin Nephrol Hypertens 28(3): 203-210
    › Primary publication · 30893214 (PubMed) · PMC6449206 (PubMed Central)
  9. Novel kidney dissociation protocol and image-based flow cytometry facilitate improved analysis of injured proximal tubules. Manolopoulou M, Matlock BK, Nlandu-Khodo S, Simmons AJ, Lau KS, Phillips-Mignemi M, Ivanova A, Alford CE, Flaherty DK, Gewin LS (2019) Am J Physiol Renal Physiol 316(5): F847-F855
    › Primary publication · 30759021 (PubMed) · PMC6580245 (PubMed Central)
  10. Peroxidasin and eosinophil peroxidase, but not myeloperoxidase, contribute to renal fibrosis in the murine unilateral ureteral obstruction model. Colon S, Luan H, Liu Y, Meyer C, Gewin L, Bhave G (2019) Am J Physiol Renal Physiol 316(2): F360-F371
    › Primary publication · 30565999 (PubMed) · PMC6397377 (PubMed Central)
  11. Substrate Elasticity Governs Differentiation of Renal Tubule Cells in Prolonged Culture. Love HD, Ao M, Jorgensen S, Swearingen L, Ferrell N, Evans R, Gewin L, Harris RC, Zent R, Roy S, Fissell WH (2019) Tissue Eng Part A 25(13-14): 1013-1022
    › Primary publication · 30484388 (PubMed) · PMC6648172 (PubMed Central)
  12. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. Chung S, Overstreet JM, Li Y, Wang Y, Niu A, Wang S, Fan X, Sasaki K, Jin GN, Khodo SN, Gewin L, Zhang MZ, Harris RC (2018) JCI Insight 3(21)
    › Primary publication · 30385721 (PubMed) · PMC6238749 (PubMed Central)
  13. Renal fibrosis: Primacy of the proximal tubule. Gewin LS (2018) Matrix Biol : 248-262
    › Primary publication · 29425694 (PubMed) · PMC6015527 (PubMed Central)
  14. Renal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe? Gewin LS (2018) Genes (Basel) 9(2)
    › Primary publication · 29364168 (PubMed) · PMC5852554 (PubMed Central)
  15. Blocking TGF- and -Catenin Epithelial Crosstalk Exacerbates CKD. Nlandu-Khodo S, Neelisetty S, Phillips M, Manolopoulou M, Bhave G, May L, Clark PE, Yang H, Fogo AB, Harris RC, Taketo MM, Lee E, Gewin LS (2017) J Am Soc Nephrol 28(12): 3490-3503
    › Primary publication · 28701516 (PubMed) · PMC5698068 (PubMed Central)
  16. Selective activation of epidermal growth factor receptor in renal proximal tubule induces tubulointerstitial fibrosis. Overstreet JM, Wang Y, Wang X, Niu A, Gewin LS, Yao B, Harris RC, Zhang MZ (2017) FASEB J 31(10): 4407-4421
    › Primary publication · 28626027 (PubMed) · PMC5602893 (PubMed Central)
  17. Kidney-specific transposon-mediated gene transfer in vivo. Woodard LE, Cheng J, Welch RC, Williams FM, Luo W, Gewin LS, Wilson MH (2017) Sci Rep : 44904
    › Primary publication · 28317878 (PubMed) · PMC5357952 (PubMed Central)
  18. Pharmacologic Blockade of v1 Integrin Ameliorates Renal Failure and Fibrosis . Chang Y, Lau WL, Jo H, Tsujino K, Gewin L, Reed NI, Atakilit A, Nunes ACF, DeGrado WF, Sheppard D (2017) J Am Soc Nephrol 28(7): 1998-2005
    › Primary publication · 28220032 (PubMed) · PMC5491273 (PubMed Central)
  19. Integrin alpha6 maintains the structural integrity of the kidney collecting system. Viquez OM, Yazlovitskaya EM, Tu T, Mernaugh G, Secades P, McKee KK, Georges-Labouesse E, De Arcangelis A, Quaranta V, Yurchenco P, Gewin LC, Sonnenberg A, Pozzi A, Zent R (2017) Matrix Biol : 244-257
    › Primary publication · 28043890 (PubMed) · PMC5330664 (PubMed Central)
  20. Progression of chronic kidney disease: too much cellular talk causes damage. Gewin L, Zent R, Pozzi A (2017) Kidney Int 91(3): 552-560
    › Primary publication · 27773427 (PubMed) · PMC5313325 (PubMed Central)
  21. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo. Simmons AJ, Banerjee A, McKinley ET, Scurrah CR, Herring CA, Gewin LS, Masuzaki R, Karp SJ, Franklin JL, Gerdes MJ, Irish JM, Coffey RJ, Lau KS (2016) Mol Syst Biol 12(8): 881
    › Primary publication · 27574014 (PubMed) · PMC5119492 (PubMed Central)
  22. NO clue to pathogenesis of aristolochic acid nephropathy. Gewin L (2016) Exp Physiol 101(1): 33
    › Primary publication · 26782267 (PubMed)
  23. Deleting the TGF-β receptor in proximal tubules impairs HGF signaling. Nlandu Khodo S, Neelisetty S, Woodbury L, Green E, Harris RC, Zent R, Gewin L (2016) Am J Physiol Renal Physiol 310(6): F499-510
    › Primary publication · 26739889 (PubMed) · PMC4796273 (PubMed Central)
  24. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo. Simmons AJ, Banerjee A, McKinley ET, Scurrah CR, Herring CA, Gewin LS, Masuzaki R, Karp SJ, Franklin JL, Gerdes MJ, Irish JM, Coffey RJ, Lau KS (2015) Mol Syst Biol 11(10): 835
    › Primary publication · 26519361 (PubMed) · PMC4631206 (PubMed Central)
  25. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells. Neelisetty S, Alford C, Reynolds K, Woodbury L, Nlandu-Khodo S, Yang H, Fogo AB, Hao CM, Harris RC, Zent R, Gewin L (2015) Kidney Int 88(3): 503-14
    › Primary publication · 25760325 (PubMed) · PMC4556568 (PubMed Central)
  26. Integrin-mediated type II TGF-β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. Chen X, Wang H, Liao HJ, Hu W, Gewin L, Mernaugh G, Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, Fässler R, Zent R, Pozzi A (2014) J Clin Invest 124(8): 3295-310
    › Primary publication · 24983314 (PubMed) · PMC4109532 (PubMed Central)
  27. Role of epoxyeicosatrienoic acids (EETs) in mediation of dopamine's effects in the kidney. Zhang MZ, Wang Y, Yao B, Gewin L, Wei S, Capdevila JH, Harris RC (2013) Am J Physiol Renal Physiol 305(12): F1680-6
    › Primary publication · 24154693 (PubMed) · PMC3882452 (PubMed Central)
  28. Imatinib: novel treatment of immune-mediated kidney injury. Wallace E, Gewin L (2013) J Am Soc Nephrol 24(5): 694-701
    › Primary publication · 23431076 (PubMed)
  29. Deleting the TGF-β receptor attenuates acute proximal tubule injury. Gewin L, Vadivelu S, Neelisetty S, Srichai MB, Paueksakon P, Pozzi A, Harris RC, Zent R (2012) J Am Soc Nephrol 23(12): 2001-11
    › Primary publication · 23160515 (PubMed) · PMC3507360 (PubMed Central)
  30. β1 integrin NPXY motifs regulate kidney collecting-duct development and maintenance by induced-fit interactions with cytosolic proteins. Mathew S, Lu Z, Palamuttam RJ, Mernaugh G, Hadziselimovic A, Chen J, Bulus N, Gewin LS, Voehler M, Meves A, Ballestrem C, Fässler R, Pozzi A, Sanders CR, Zent R (2012) Mol Cell Biol 32(20): 4080-91
    › Primary publication · 22869523 (PubMed) · PMC3457338 (PubMed Central)
  31. How does TGF-β mediate tubulointerstitial fibrosis? Gewin L, Zent R (2012) Semin Nephrol 32(3): 228-35
    › Primary publication · 22835453 (PubMed) · PMC4948283 (PubMed Central)
  32. Membrane-type 4 matrix metalloproteinase (MT4-MMP) modulates water homeostasis in mice. Srichai MB, Colleta H, Gewin L, Matrisian L, Abel TW, Koshikawa N, Seiki M, Pozzi A, Harris RC, Zent R (2011) PLoS One 6(2): e17099
    › Primary publication · 21347258 (PubMed) · PMC3037967 (PubMed Central)
  33. TGF-beta receptor deletion in the renal collecting system exacerbates fibrosis. Gewin L, Bulus N, Mernaugh G, Moeckel G, Harris RC, Moses HL, Pozzi A, Zent R (2010) J Am Soc Nephrol 21(8): 1334-43
    › Primary publication · 20576806 (PubMed) · PMC2938601 (PubMed Central)
  34. beta1 integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Zhang X, Mernaugh G, Yang DH, Gewin L, Srichai MB, Harris RC, Iturregui JM, Nelson RD, Kohan DE, Abrahamson D, Fässler R, Yurchenco P, Pozzi A, Zent R (2009) Development 136(19): 3357-66
    › Primary publication · 19710172 (PubMed) · PMC2739149 (PubMed Central)
  35. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Pozzi A, Jarad G, Moeckel GW, Coffa S, Zhang X, Gewin L, Eremina V, Hudson BG, Borza DB, Harris RC, Holzman LB, Phillips CL, Fassler R, Quaggin SE, Miner JH, Zent R (2008) Dev Biol 316(2): 288-301
    › Primary publication · 18328474 (PubMed) · PMC2396524 (PubMed Central)